Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) March 27, 2023

Synthesis, structural and spectroscopic investigations of dolomite-type MSn(BO3)2 with M = Mn, Fe, Co and Ni

  • Sarah Wittmann ORCID logo , M. Mangir Murshed ORCID logo EMAIL logo , Vitaliy Bilovol ORCID logo and Thorsten M. Gesing ORCID logo

Abstract

Dolomite-type MSn(BO3)2 phases for M = Mn, Fe, Co and Ni have been synthesized using solid-state synthesis carried out in sealed quartz tubes. X-ray powder diffraction data Rietveld refinements confirm the rhombohedral space group R 3 for all compositions. The change in unit-cell parameters follows the increasing nature of the radius of the M-cations. Both the MO6 and SnO6 octahedra are found to be quite regular. 119Sn Mössbauer spectroscopy investigations complement the almost undistorted nature of the SnO6 octahedra and the tetra-valent charge of the tin-atoms. Detailed vibrational features are described from the Raman and the FTIR spectral data collected at ambient conditions. The frequency shifts of some selective Raman and IR bands are explained in terms of the change of cationic sizes and the respective M–O bond distances. The UV/Vis diffuse reflectance data are analyzed using the RATD method, leading to direct bandgaps for all the investigated samples. The wide bandgap semiconductors (3 – 4 eV) show increasing transition energies with increasing cation sizes of the high-spin M-cations in the dolomite types.


Corresponding author: M. Mangir Murshed, Institute of Inorganic Chemistry and Crystallography, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; and MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359 Bremen, Germany, E-mail:
Current address: Vitaliy Bilovol, Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland

Award Identifier / Grant number: GE1981/14-1, INST144/435-1FUGG, and INST144/458-1FUGG

Acknowledgements

We gratefully thank the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG) under grant number GE1981/14-1 for the financial support and for large instrument support within grant INST144/435-1FUGG and INST144/458-1FUGG. The University of Bremen is cordially acknowledged for the technical and administrative supports. V.B. is highly thankful to INTECIN (CONICET) for the partial financial supports. The Universidad de Buenos Aires (UBACyT 20020190200037BA) is also acknowledged.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was funded by the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG) under grant number GE1981/14-1 for the financial support and for large instrument support within grant INST144/435-1FUGG and INST144/458-1FUGG.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Hermann, J., Troitzsch, U., Scott, D. Experimental subsolidus phase relations in the system CaCO3–CaMg(CO3)2 up to 6.5 GPa and implications for subducted marbles. Contrib. Mineral. Petrol. 2016, 171, 84; https://doi.org/10.1007/s00410-016-1296-y.Search in Google Scholar

2. Bickle, M. J., Powell, R. Calcite-dolomite geothermometry for iron-bearing carbonates. Contrib. Mineral. Petrol. 1977, 59, 281–292; https://doi.org/10.1007/bf00374557.Search in Google Scholar

3. Konovalenko, S. I., Voloshin, A. V., Pakhomovskiy, Y. A., Anen’yev, S. S., Perlina, G. A., Rogachev, D. L., Kuznetsov, V. Y. Tusionite, MnSn(BO3)2, a new borate from granite pegmatite of southwestern pamir. Int. Geol. Rev. 1984, 26, 481–485; https://doi.org/10.1080/00206818409466576.Search in Google Scholar

4. Cooper, M., Hawthorne, F. C., Novak, M. The crystal structure of tusionite, Mn2+Sn4+(BO3)2, a dolomite-structure borate. Can. Mineral. 1994, 32, 903–907.Search in Google Scholar

5. Vicat, J., Aléonard, S. Etude de borates MeMe′(BO3)2 de structure dolomite. Mater. Res. Bull. 1968, 3, 611–620; https://doi.org/10.1016/0025-5408(68)90093-7.Search in Google Scholar

6. Mirakov, M. A., Pautov, L. A., Shodibekov, M. A., Plechov, P. Y., Karpenko, V. Y. A new scandium-bearing variety of tusionite from the Eastern Pamirs (Tajikistan). Geol. Ore Deposits 2020, 61, 809–817; https://doi.org/10.1134/s1075701519080087.Search in Google Scholar

7. Blasse, G., Sas, S. J. M., Smit, W. M. A., Konijnendijk, W. L. Luminescent materials with dolomite structure. Mater. Chem. Phys. 1986, 14, 253–258; https://doi.org/10.1016/0254-0584(86)90039-8.Search in Google Scholar

8. Suknev, V. S., Diman, E. N. The infrared spectra of norde nskiöldine and its analogs. J. Appl. Spectrosc. 1969, 10, 234–236; https://doi.org/10.1007/bf00615366.Search in Google Scholar

9. Pottier, M.-J. Spectre vibrationnel des orthoborates de type dolomite – l’influence des couplage vibrationnels sur la vibration de déformation v2 des groupments isotopiques 10BO3 et 11BO3. Spectrochim. Acta 1976, 33, 625–630; https://doi.org/10.1016/0584-8539(77)80137-2.Search in Google Scholar

10. Aléonard, S., Vicat, J. Borates de structure dolomie. Bull. Soc. Fr. Minéral. Cristallogr. 1966, 89, 271–272.10.3406/bulmi.1966.5965Search in Google Scholar

11. Suknev, V. S., Diman, E. N. The infrared spectra of nordenskiöldine and its analogs. Zh. Prikl. Spektrosk. 1969, 10, 326–328; https://doi.org/10.1007/bf00615366.Search in Google Scholar

12. Bayer, G. Thermal expansion anisotropy of dolomite-type borates Me2+Me4+B2O6. Z. Kristallogr. 1971, 133, 85–90; https://doi.org/10.1524/zkri.1971.133.133.85.Search in Google Scholar

13. Gunasekaran, S., Anbalagan, G. Thermal decomposition of natural dolomite. Bull. Soc. Fr. Minéral. Cristallogr. 2007, 30, 339–344; https://doi.org/10.1007/s12034-007-0056-z.Search in Google Scholar

14. Doi, Y., Satou, T., Hinatsu, Y. Crystal structures and magnetic properties of lanthanide containing borates LnM(BO3)2 (Ln = Y, Ho–Lu; M = Sc, Cr). J. Solid State Chem. 2013, 206, 151–157; https://doi.org/10.1016/j.jssc.2013.08.015.Search in Google Scholar

15. Zhao, S., Zhang, G., Zhang, X., Wang, L., Hao, W., Wu, Y. Growth and optical properties of Na3Gd2(BO3)3 crystal. Opt. Mater. 2012, 34, 1464–1467; https://doi.org/10.1016/j.optmat.2012.03.002.Search in Google Scholar

16. Kawano, T., Yamane, H. Synthesis, crystal structure and luminescent properties of titanium(IV)-doped calcium borostannates, CaSn1−xTix(BO3)2. J. Alloys Compd. 2010, 490, 443–447; https://doi.org/10.1016/j.jallcom.2009.10.034.Search in Google Scholar

17. Macke, A. J. H. Investigations on the luminescence of titanium-activated stannates and zirconates. J. Solid State Chem. 1976, 18, 337–346; https://doi.org/10.1016/0022-4596(76)90116-x.Search in Google Scholar

18. Blasse, G., Dalhoeven, G. A. M., Choisnet, J., Studer, F. On the luminescence of titanium-activated stannates. J. Solid State Chem. 1981, 39, 195–198; https://doi.org/10.1016/0022-4596(81)90331-5.Search in Google Scholar

19. Peacor, D. R., Essene, E. J., Gaines, A. M. Petrologic and crystal-chemical implications of cation order-discorder in kutnahorite [CaMn(CO3)2]*. Am. Mineral. 1987, 72, 319–328.Search in Google Scholar

20. Hornebecq, V., Gravereau, P., Chaminade, J. P., Lebraud, E. BaZr(BO3)2: a non-centrosymmetric dolomite-type superstructure. Mater. Res. Bull. 2002, 37, 2165–2178; https://doi.org/10.1016/s0025-5408(02)00899-1.Search in Google Scholar

21. Gesing, T. M., Murshed, M. M., Schuh, S., Thüringer, O., Krämer, K., Neudecker, T., Mendive, C. B., Robben, L. Nano-crystalline precursor formation, stability, and transformation to mullite-type visible-light photocatalysts. J. Mater. Sci. 2022, 57, 19280–19299; https://doi.org/10.1007/s10853-022-07854-w.Search in Google Scholar

22. Brand, R. A. Normos Programs (SITE-DIST) (Ed.: Duisburg University); Angew. Phys., 1991.Search in Google Scholar

23. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances. Acta Crystallogr. 1976, A32, 751; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar

24. Housecroft, S., Sharpe, A. G. Inorganic Chemistry, 4th ed.; Pearson: Harlow, England, 2012; pp. 639–777.Search in Google Scholar

25. Granone, L. I., Ulpe, A. C., Robben, L., Klimke, S., Jahns, M., Renz, F., Gesing, T. M., Bredow, T., Dillert, R., Bahnemann, D. W. Effect of the degree of inversion on optical properties of spinel ZnFe2O4. Phys. Chem. Chem. Phys. 2018, 20, 28267–28278; https://doi.org/10.1039/c8cp05061a.Search in Google Scholar PubMed

26. Hiremath, V., Kwon, H. J., Jung, I.-S., Kwon, S., Kwon, S. H., Lee, S. G., Lee, H. C., Seo, J. G. Mg-ion inversion in MgO@MgO–Al2O3 oxides: the origin of basic sites. ChemSusChem 2019, 12, 2810–2818; https://doi.org/10.1002/cssc.201900072.Search in Google Scholar PubMed

27. Li, D., Peng, N., Bancroft, G. M. The vibrational spectra and structure of Nordenskiödine. Can. Mineral. 1994, 32, 81–86.Search in Google Scholar

28. Peercy, P. S., Morosin, B. Pressure and temperature dependences of the Raman-active phonons in SnO2. Phys. Rev. B 1973, 7, 2779–2786; https://doi.org/10.1103/physrevb.7.2779.Search in Google Scholar

29. Manghnani, M., Hushur, A., Wu, J., Stebbins, J., Williams, Q. Brillouin, and nuclear magnetic resonance spectroscopic studies on shocked borosilicate glass. J. Appl. Phys. 2011, 109, 113509; https://doi.org/10.1063/1.3592346.Search in Google Scholar

30. Lippens, P. E. Interpretation of the 119Sn Mössbauer isomer shifts in complex tin chalcogenides. Phys. Rev. B 1999, 60, 4576–4586; https://doi.org/10.1103/physrevb.60.4576.Search in Google Scholar

31. Mahmoud, A., Chamas, M., Jumas, J.-C., Philippe, B., Dedryvère, R., Gonbeau, D., Saadoune, I., Lippens, P.-E. Electrochemical performances and mechanisms of MnSn2 as anode material for Li-ion batteries. J. Power Sources 2013, 244, 246–251; https://doi.org/10.1016/j.jpowsour.2013.01.110.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zkri-2023-0002).


Received: 2023-01-06
Accepted: 2023-03-08
Published Online: 2023-03-27
Published in Print: 2023-05-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2023-0002/html
Scroll to top button