Skip to main content
Log in

Mitochondrial markers differentiate two distinct phylogenetic groups in indigenous rice landraces of northeast India: an evolutionary insight

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The inheritance of the mitochondria genome and its diversity is unique for genetic and evolutionary studies relative to nuclear genomes. Northeast India and Himalayan regions are considered as one of the centres of indica rice origin. Also, rice diversity in northeast India is very distinct and highly suited for evolutionary studies. Although reports are available on the genetic diversity of indigenous northeast rice landraces, its relationship with the wild relatives is not yet properly explored and understood. In an attempt, mitochondrial markers were used to study the evolutionary relationship between the 68 landraces of northeast India and wild relatives (O. rufipogon and O. nivara) along with IR64 (indica) and Nipponbare (japonica) were taken as reference cultivars. Phylogenetically, the findings include two distinct clusters in the indigenous northeast India landraces representing indica and japonica groups. Further, the wild relatives and ~60% of northeast India landraces were identified to be closely related to the Nipponbare cluster. Besides, landraces of northeast India grouping with the indica group (IR64) are characterized by the absence of wild relatives. This indicates that there are two distinct evolutionary paths in the origin of northeast Indian rice landraces based on mitochondrial markers diversity and it is proposed that the inheritance of mitochondria, mitonuclear genome interactions, and bottleneck events could have genetically separated these two phylogenetically unique groups of northeast rice landraces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Allaby R. G., Stevens C., Lucas L., Maeda O. and Fuller D. Q. 2017 Geographic mosaics and changing rates of cereal domestication. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160429.

    Article  Google Scholar 

  • Barr C. M., Neiman M. and Taylor D. R. 2005 Inheritance and recombination of mitochondrial genomes in plants, fungi and animals. New Phytol. 168, 39–50.

    Article  CAS  PubMed  Google Scholar 

  • Birky C. W. 1995 Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc. Natl. Acad. Sci. USA 9, 11331–11338.

    Article  Google Scholar 

  • Birky C. W. 2008 Uniparental inheritance of organelle genes. Curr. Biol. 18, R692-695.

    Article  CAS  PubMed  Google Scholar 

  • Chang T. T. 1976 The origin, evolution, cultivation, dissemination, and diversification of Asian and African rices. Euphytica 25, 425–441.

    Article  Google Scholar 

  • Cheng L., Nam J., Chu S. H., Rungnapa P., Min M. H., Cao Y. et al. 2019 Signatures of differential selection in chloroplast genome between japonica and indica. Rice (NY) 12, 65.

    Article  Google Scholar 

  • Chong E. T. J., Goh L. P. W., Latip M. A., Aziz Z. A., Surugao N. and Lee P. C. 2021 Genetic diversity of upland traditional rice varieties in Malaysian Borneo based on mitochondrial cytochrome c oxidase 3 gene analysis. AIMS Agric. Food 6, 235–246.

    Article  Google Scholar 

  • Choudhury B., Khan M. L. and Dayanandan S. 2013 Genetic structure and diversity of indigenous rice (Oryza sativa) varieties in the eastern Himalayan region of northeast India. Spr. plus 2, 228.

    Article  Google Scholar 

  • Civáň P., Craig H., Cox C. J. and Brown T. A. 2015 Three geographically separate domestications of Asian rice. Nat. Plants 1, 1–5.

    Article  Google Scholar 

  • Evanno G., Regnaut S. and Goudet J. 2005 Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611–2620.

    Article  CAS  PubMed  Google Scholar 

  • Falush D., Stephens M. and Pritchard J. K. 2003 Inference of population structure using multi locus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fornasiero A., Wing R. A. and Ronald P. 2022 Rice domestication. Curr. Biol. 32, R20–R24.

    Article  CAS  PubMed  Google Scholar 

  • Fuller D. Q., Ling Q., YunFei Z., Zhao Z., Chen X., Hosoya L. et al. 2009 The domestication process and domestication rate in rice: spikelet bases from the Lower Yangtze. Science (washington) 323, 1607–1610.

    Article  CAS  Google Scholar 

  • Gao L. Z. and Innan H. 2008 Non independent domestication of the two rice subspecies, Oryza sativa ssp. indica and ssp. japonica, demonstrated by multi locus microsatellites. Genetics 179, 965–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao L. Z., Liu Y. L., Zhang D., Li W., Gao J., Liu Y. et al. 2019 Evolution of Oryza chloroplast genomes promoted adaptation to diverse ecological habitats. Commun. Biol. 2, 1–13.

    Article  Google Scholar 

  • Garris A. J., Tai T. H., Coburn J., Kresovich S. and McGouch S. 2005 Genetic structure and diversity in Oryza sativa L. Genetics 169, 1631–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray M. W., Burger G. and Lang B. F. 2001 The origin and early evolution of mitochondria. Gen. Biol. 2, reviews1018.1-reviews1018.5.

    Article  Google Scholar 

  • Gutaker R. M., Groen S. C., Bellis E. S., Choi J. Y., Pire I. S., Bocinsky R. K. et al. 2020 Genomic history and ecology of the geographic spread of rice. Nat. Plants 6, 492–502.

    Article  PubMed  Google Scholar 

  • Hore D. K. 2005 Rice diversity collection, conservation and management in northeastern India. Genet. Res. Crop Evol. 52, 1129–1140.

    Article  Google Scholar 

  • Hu H., Hu Q., Al-Shehbaz I. A., Luo X., Zeng T., Guo X. et al. 2016 Species delimitation and interspecific relationships of the genus Orychophragmus (Brassicaceae) inferred from whole chloroplast genomes. Front. Plant Sci., https://doi.org/10.3389/fpls.2016.01826.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang X., Kurata N., Wei X., Wang Z. X., Wang A., Zhao Q. et al. 2012 A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khush G. S. 1997 Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 35, 25–34.

    Article  CAS  PubMed  Google Scholar 

  • Liu K. and Muse S. V. 2005 PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21, 2128–2129.

    Article  CAS  PubMed  Google Scholar 

  • Londo J. P., Chiang Y. C., Hung K. H., Chiang T. Y. and Schal B. A. 2006 Phylogeography of Asian wild rice, Oryzarufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc. Natl. Acad. Sci. USA 103, 9578–9583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo S., Valencia C. A., Zhang J., Lee N., Slone J., Gui B. et al. 2018 Biparental inheritance of mitochondrial DNA in humans. Proc. Natl. Acad. Sci. USA 115, 13039–13044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M., Maruyama T. and Chakraborty R. 1975 The bottleneck effect and genetic variability in populations. Evolution 29, 1–10.

    Article  PubMed  Google Scholar 

  • Park H. S., Lee W. K., Lee S. C., Lee H. O., Joh H. J., Park J. Y. et al. 2021 Inheritance of chloroplast and mitochondrial genomes in cucumber revealed by four reciprocal F1 hybrid combinations. Sci. Rep. 11, 2506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peakall R. and Smouse P. E. 2012 GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard J. K., Stephens M. and Donnelly P. 2000 Inference of population structure using multilocus genotype data. Genetics 155, 945–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sang T. and Ge S. 2007 Genetics and phylogenetics of rice domestication. Curr. Opin. Genet. Dev. 17, 533–538.

    Article  CAS  PubMed  Google Scholar 

  • Santos J. D., Chebotarov D., McNally K. L., Bartholome J., Droc G., Billot C. et al. 2019 Fine scale genomic signals of admixture and alien introgression among Asian rice landraces. Gen. Biol. Evol. 11, 1358–1373.

    Article  CAS  Google Scholar 

  • Shah S. M., Aslam K., Shabir G., Khan A. R., Abbassi B. H., Shinwari Z. K. et al. 2015 Population structure and diversity of the aa genome of rice based on simple sequence repeats variation in organelle genome. Pak. J. Bot. 10, 1773–1782.

    Google Scholar 

  • Shomura A., Izawa T., Ebana K., Ebitani T., Kanegae H., Konishi S. et al. 2008 Deletion in a gene associated with grain size increased yields during rice domestication. Nat. Genet. 40, 1023–1028.

    Article  CAS  PubMed  Google Scholar 

  • Silva F., Weisskopf A., Castillo C., Murphy C., Banham E. K., Qin L. et al. 2018 A tale of two rice varieties: Modelling the prehistoric dispersals of japonica and proto-indica rices. Holocene 28, 1745–1758.

    Article  Google Scholar 

  • Sun Q., Wang K., Yoshimura A. and Doi K. 2002 Genetic differentiation for nuclear, mitochondrial. and chloroplast genomes in common wild rice (Oryza rufipogon Griff.) and cultivated rice (Oryza sativa L.). Theor. Appl. Genet. 104, 1335–1345.

    Article  CAS  PubMed  Google Scholar 

  • Tian X., Zheng J., Hu S. and Yu J. 2006 The rice mitochondrial genomes and their variations. Plant Physiol. 140, 401–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong W., Kim T. S. and Park Y. J. 2016 Rice chloroplast genome variation architecture and phylogenetic dissection in diverse oryza species assessed by whole-genome resequencing. Rice (n Y) 9, 57.

    Article  PubMed  Google Scholar 

  • Tong W., He Q. and Park Y. J. 2017 Genetic variation architecture of mitochondrial genome reveals the differentiation in Korean landrace and weedy rice. Sci. Rep. 7, 43327.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaughan D. A., Lu B. R. and Tomooka N. 2008 The evolving story of rice evolution. Plant Sci. 174, 394–408.

    Article  CAS  Google Scholar 

  • Wang D. Y., Zhang Q., Liu Y., Lin Z. F., Zhang S. X., Sun M. X. et al. 2010 The levels of male gametic mitochondrial DNA are highly regulated in angiosperms with regard to mitochondrial inheritance[W]. Plant Cell 22, 2402–2416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wing R. A., Purugganan M. D. and Zhang Q. 2018 The rice genome revolution: from an ancient grain to Green Super Rice. Nat. Rev. Genet. 19, 505–517.

    Article  CAS  PubMed  Google Scholar 

  • Yang W., Zou J., Wang J., Li N., Luo X., Jiang X. et al. 2020 Wide crossing diversify mitogenomes of rice. BMC Plant Biol. 20, 159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan Y., Zhang Q., Zeng S., Gu L., Si W., Zhang X. et al. 2017 Selective sweep with significant positive selection serves as the driving force for the differentiation of japonica and indica rice cultivars. BMC Genomics 18, 307.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All the authors gratefully acknowledge the financial support provided by the Indian Council of Agricultural Research (ICAR), New Delhi, for supporting this work. Also, we sincerely acknowledge the Director, National Rice Research Institute (ICAR-NRRI), Cuttack for providing the necessary lab facilities for the completion of this work.

Author information

Authors and Affiliations

Authors

Contributions

TM: conceptualization; BCP: coordination of work; MP: genotyping, analysis, manuscript preparation; GG: data analysis; PC: analysis, interpretation, validation, manuscript editing and finalization; NU & CBS: data analysis and manuscript editing; SS & JLK: manuscript finalization.

Corresponding author

Correspondence to Parameswaran Chidambaranathan.

Additional information

Corresponding editor: Shrish Tiwari

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2452 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parida, M., Gouda, G., Chidambaranathan, P. et al. Mitochondrial markers differentiate two distinct phylogenetic groups in indigenous rice landraces of northeast India: an evolutionary insight. J Genet 102, 26 (2023). https://doi.org/10.1007/s12041-023-01422-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-023-01422-0

Keywords

Navigation