Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Twisted forms of classical groups
HTML articles powered by AMS MathViewer

by E. Voronetsky
Translated by: the author
St. Petersburg Math. J. 34 (2023), 179-204
DOI: https://doi.org/10.1090/spmj/1750
Published electronically: March 22, 2023

Abstract:

Twisted forms of classical reductive group schemes are described in a unified way. Such group schemes are constructed from algebraic objects of finite rank, excluding some exceptions of small rank. These objects, called the augmented odd form algebras, consist of $2$-step nilpotent groups with an action of the underlying commutative ring, hence the basic descent theory for them will be developed. Finally, classical isotropic reductive groups are described as odd unitary groups up to an isogeny.
References
  • E. Yu. Voronetskiĭ, Groups normalized by an odd unitary group, Algebra i Analiz 31 (2019), no. 6, 38–78 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 31 (2020), no. 6, 939–967. MR 4039347, DOI 10.1090/spmj/1630
  • V. A. Petrov, Odd unitary groups, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 305 (2003), no. Vopr. Teor. Predst. Algebr. i Grupp. 10, 195–225, 241 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 130 (2005), no. 3, 4752–4766. MR 2033642, DOI 10.1007/s10958-005-0372-z
  • V. A. Petrov and A. K. Stavrova, Elementary subgroups in isotropic reductive groups, Algebra i Analiz 20 (2008), no. 4, 160–188 (Russian); English transl., St. Petersburg Math. J. 20 (2009), no. 4, 625–644. MR 2473747, DOI 10.1090/S1061-0022-09-01064-4
  • A. Bak, The stable structure of quadratic modules, Thesis Columbia Univ., 1969.
  • Baptiste Calmès and Jean Fasel, Groupes classiques, Autours des schémas en groupes. Vol. II, Panor. Synthèses, vol. 46, Soc. Math. France, Paris, 2015, pp. 1–133 (French, with English and French summaries). MR 3525594
  • Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
  • Brian Conrad, Reductive group schemes, Autour des schémas en groupes. Vol. I, Panor. Synthèses, vol. 42/43, Soc. Math. France, Paris, 2014, pp. 93–444 (English, with English and French summaries). MR 3362641
  • Schémas en groupes. I: Propriétés générales des schémas en groupes, Lecture Notes in Mathematics, Vol. 151, Springer-Verlag, Berlin-New York, 1970 (French). Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3); Dirigé par M. Demazure et A. Grothendieck. MR 0274458
  • Manfred Hartl, Quadratic maps between groups, Georgian Math. J. 16 (2009), no. 1, 55–74. MR 2527615, DOI 10.1515/GMJ.2009.55
  • Max-Albert Knus, Quadratic and Hermitian forms over rings, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 294, Springer-Verlag, Berlin, 1991. With a foreword by I. Bertuccioni. MR 1096299, DOI 10.1007/978-3-642-75401-2
  • Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, The book of involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998. With a preface in French by J. Tits. MR 1632779, DOI 10.1090/coll/044
  • Ottmar Loos, Bimodule-valued Hermitian and quadratic forms, Arch. Math. (Basel) 62 (1994), no. 2, 134–142. MR 1255637, DOI 10.1007/BF01198668
  • Marco Schlichting, Higher $K$-theory of forms I. From rings to exact categories, J. Inst. Math. Jussieu 20 (2021), no. 4, 1205–1273. MR 4293796, DOI 10.1017/S1474748019000410
  • A. Stavrova, On the congruence kernel of isotropic groups over rings, Trans. Amer. Math. Soc. 373 (2020), no. 7, 4585–4626. MR 4127856, DOI 10.1090/tran/8091
  • J. Tits, Formes quadratiques, groupes orthogonaux et algèbres de Clifford, Invent. Math. 5 (1968), 19–41 (French). MR 230747, DOI 10.1007/BF01404536
  • Egor Voronetsky, Injective stability for odd unitary $K_1$, J. Group Theory 23 (2020), no. 5, 781–800. MR 4141379, DOI 10.1515/jgth-2020-0013
  • —, Centrality of odd unitary $\mathrm {K}_2$-functor, preprint, arXiv:2005.02926, 2020.
  • André Weil, Algebras with involutions and the classical groups, J. Indian Math. Soc. (N.S.) 24 (1960), 589–623 (1961). MR 136682
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2020): 14L35
  • Retrieve articles in all journals with MSC (2020): 14L35
Bibliographic Information
  • E. Voronetsky
  • Affiliation: Chebyshev Laboratory, St. Petersburg State University, 14th Line V.O., 29B, St. Petersburg 199178, Russia
  • Email: voronetckiiegor@yandex.ru
  • Received by editor(s): July 12, 2021
  • Published electronically: March 22, 2023
  • Additional Notes: Research is supported by the Russian Science Foundation grant 19-71-30002
  • © Copyright 2023 American Mathematical Society
  • Journal: St. Petersburg Math. J. 34 (2023), 179-204
  • MSC (2020): Primary 14L35
  • DOI: https://doi.org/10.1090/spmj/1750