Skip to main content
Log in

The Specific Activity of the Naturally Occurring Radionuclides and Artificially Produced 137Cs in Soils and Herbaceous Plants of Rostov Oblast

  • SYSTEMATIC STUDY OF ARID TERRITORIES
  • Published:
Arid Ecosystems Aims and scope Submit manuscript

Abstract

This study examined the characteristics of distribution in plants and soils of the naturally occurring (226Ra, 232Th, and 40K) and artificially produced (137Cs) radionuclides in the conditions of the dry and semi-dry steppes for Rostov Oblast. As the research objects, it involves samples of soils and plants collected in Tsimlyanskii, Volgodonskii, Dubovskii, Proletarskii, and Orlovskii districts of Rostov Oblast in expeditions during 2001–2019. The specific activity (concentration) of the radionuclides in the soil was measured using the gamma-ray spectrometry of radionuclide analysis. The artificially produced 137Cs is unevenly distributed in the soil cover and vegetation of Rostov Oblast due to the specific fallout pattern after the Chernobyl disaster. The naturally occurring 226Ra and 232Th are comparable in their specific activity in the soils and herbage within the limits of the standard deviations (20–30%), which averages 21.2 Bq/kg and 24.8 Bq/kg for 226Ra and 232Th in plants and 22 Bq/kg and 27.1 Bq/kg for 226Ra and 232Th in soils. The concentration of 40К is 149.4 Bq/kg and 468.5 Bq/kg in plants and soils, respectively; it is governed by distinctive features of solonetzic soils of the dry-steppe zone in Rostov Oblast. Series were created based on specific activity of radionuclides in the plants herbage: 40K > 226Ra ≥ 232Th > 137Cs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Akimov, L.M., Trends of variation in the thermal regime in arid and adjacent areas in the European part of Russia in summer, Arid. Ecosyst., 2021, vol. 11, no. 4, pp. 319–326.

    Article  Google Scholar 

  2. Atlas radioaktivnogo zagryazneniya Evropeiskoi chasti Rossii, Belorussii i Ukrainy (Atlas of Radioactive Contamination of the European part of Russia, Belarus and Ukraine), Izrael’, Yu.A., Ed., Moscow: Federal’naya Sluzhba Geodezii i Kartografii Rossii, 1998.

  3. Bezuglova, O.S., Il’inskaya, I.N., Gaevaya, E.A., and Minaeva, E.N., Soil fertility of the Rostov region in connection with aridization, in Natsional’nyi doklad “Global’nyi klimat i pochvennyi pokrov Rossii: proyavleniya zasukhi, mery preduprezhdeniya, bor’by, likvidatsiya posledstvii i adaptatsionnye meropriyatiya (sel’skoe i lesnoe khozyaistvo). Kollektivnaya monografiya (National Report "Global Climate and Soil Cover of Russia: Manifestations of Drought, Prevention Measures, Control, Elimination of Consequences and Adaptation Measures (Agriculture and Forestry). Collective Monograph) Edel’geriev, R.S.Kh., Ivanov, A.L., Donnik, I.M., et al., Moscow: Pochvennyi Institut Imeni V.V. Dokuchaeva, 2021, pp. 172–177.

  4. Bezuglova, O.S. and Khyrkhyrova, M.M., Pochvy Rostovskoi oblasti (Soils of Rostov Oblast), Rostov–on–Don: Yuzhn. Feder. Univ, 2008.

  5. Bezuglova, O.S., Il’inskaya, I.N., Zakrutkin, V.E., Nazarenko, O.G., Litvinov, Yu.A., Gaevaya, E.A., Mezhenkov, A.A., and Zhumbei, A.I., Land degradation dynamics in Rostov Oblast, Izv. Ross. Akad. Nauk. Seriya Geograficheskaya, 2022, no. 86 (1), pp. 41–54.

  6. Bezuglova, O.S., Nazarenko, O.G., and Ilyinskaya, I.N., Land degradation dynamics in Rostov Oblast, Arid. Ecosyst., 2020, vol. 10, no. 2, pp. 93–97.

    Article  Google Scholar 

  7. Bodrov, I.V., Buraeva, E.A., Davydov, M.G., and Mareskin, S.A., Instrumental determination of uranium and thorium in natural objects, At. Energ., 2004, vol. 96, no. 4, pp. 271–276.

    Article  Google Scholar 

  8. Buraeva, E.A., Davydov, M.G., Zorina, L.V., and Stasov, V.V., Background components of Ge(Li)- and GeHP-detector in passive shielding, At. Energ., 2007, vol. 103, no. 5, pp. 318–322.

    Article  Google Scholar 

  9. Chernysh, A.F. and Anoshko, B.C., Migration and accumulation of radionuclides in eroded agrolandscapes of the Belarusian Polesye, Vestn. Beloruss. Gos. Univ., Ser. 2, 2006, no. 1, pp 98–102. https://elib.bsu.by/bitstream/123456789/22810/1/98–102.pdf. Cited June 15, 2022.

  10. El–Arabi, A.M., 226Ra, 232Th, and 40K concentrations in igneous rocks from eastern desert, Egypt and its radiological implications, Radiat. Meas., 2007, vol. 42, no. 1, pp. 94–100.

    Article  Google Scholar 

  11. Ezhegodnik. Radiatsionnaya obstanovka na territorii Rossii i sopredel’nykh gosudarstv v 2021 godu (Rosgidromet) (Yearbook. Radiation Situation in Russia and Neighboring States in 2021 (Roshydromet)), Obninsk: FGBU “Nauchno-Proizvodstvennoye Ob"yedineniye “Taifun”", 2022.

  12. Gorbachev, B.N., Rastitel’nost’ i estestvennye kormovye ugod’ya Rostovskoi oblasti (Vegetation and natural fodder lands of Rostov Oblast), Rostov-on-Don: Rostovskoe Knizhnoe Izdatel’stvo, 1974.

  13. Gubarev, D.I., Levitskaya, N.G., and Derevyagin, S.S., Influence of climate change on soil degradation in arid zones of the Volga region, Arid. Ecosyst., 2022, vol. 12, no. 1, pp. 15–21.

    Article  Google Scholar 

  14. Helal, A.A., Arida, H.A., Rizk, H.E., et al., Interaction of cesium with humic materials: A comparative study of radioactivity and ISE measurements, Radiochemistry, 2007, vol. 49, no. 5, pp. 523–529.

    Article  CAS  Google Scholar 

  15. Ladonin, D.V. and Plyaskina, O.V., Isotopic composition of lead in soils and street dust in the Southeastern administrative district of Moscow, Eurasian Soil Sc., 2009, vol. 42, no. 1, pp. 93–104.

    Article  Google Scholar 

  16. Kasimov, N.S., Bezberdaya, L.A., Vlasov, D.V., et al., Metals, metalloids, and Benzo[a]pyrene in PM10 particles of soils and road dust of Alushta city, Eurasian Soil Sc., 2019, vol. 52, no. 12, pp. 1608–1621.

    Article  CAS  Google Scholar 

  17. Makhan’ko, K.P., Influence of the wind rise of radioactive dust on atmospheric pollution over the territory of Russia, At. Energ., 2000, no. 6, pp. 460–464.

  18. Morozov, I.V. and Bezuglova, O.S., Classifications of elementary soil particles in different schools of soil science, Fundam. Issled., no. 12, pp. 281–285.

  19. MVK № 1.5.2 (45)–11. Metodika kontrolya udel’noi aktivnosti grunta (pochvy) s primeneniem probootbora. Svidetel’stvo № 45 090.1K196 (MVC No. 1.5.2 (45)-11. Method for monitoring the specific activity of soil using sampling. Certificate No. 45 090.1K196.), 2011.

  20. Okorkov, V.V., On factors of solonetzes soil peptization, Vladimirskii Zemledelets, 2020, no. 4 (94), pp. 21–32.

  21. Pagano, P., De Zaiacomo, T., Scarcella, E., Bruni, S., and Calamosca, M., Mutagenic activity of total and particle–sized fractions of urban particulate matter, Environ. Sci. Technol., 1996, vol. 30, pp. 3512–3516.

    Article  CAS  Google Scholar 

  22. Parfenova, A.V. and Dashkevich, L.V., Aridization of the climate of the Rostov Oblast, Ekologiya. Ekonomika. Informatika. Seriya: Sistemnyi Analiz i Modelirovanie Ekonomicheskikh i Ekologicheskikh System, 2021, vol. 1, no. 6, pp. 131–138.

    Google Scholar 

  23. Shinkarenko, S.S., Tkachenko, N.A., Bartalev, S.A., Yuferev, V.G., and Kulik, K.N., Dust storms in the south of the European part of Russia in September–October 2020, Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 2020, vol. 17, no. 5, pp. 291–296.

  24. Thorpe, A. and Harrison, R.M., Sources and properties of non–exhaust particulate matter from road traffic: A review, Sci. Total Environ., 2008, vol. 400, nos. 1–3, pp. 270–282.

    Article  CAS  PubMed  Google Scholar 

  25. Ukarkhanova, D.T., Moskovchenko, D.V., and Yurtaev, A.A., On the question of studyng dust-like formations in urban ecosystems, Byulleten’ Pochvennogo Instituta Imeni V.V. Dokuchaeva, 2020, no. 104, pp. 241–269.

  26. Wei, B. and Yang, L., A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China, Microchem. J., 2010, vol. 94, no. (2), pp. 99–107.

  27. Zalibekov, Z.G., Mamaev, S.A., Biarslanov, A.B., et al., Soils of arid regions of southern Russia in the basic classification of soils of the world, Arid. Ecosyst., 2022, vol. 12, no. 1, pp. 34–42.

    Article  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (State Assignment in the domain of research activity, the Southern Federal University, 2020), topic no. BAЗ0110/20-3-07IF.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. A. Buraeva or O. S. Bezuglova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by E. Kuznetsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buraeva, E.A., Bezuglova, O.S. The Specific Activity of the Naturally Occurring Radionuclides and Artificially Produced 137Cs in Soils and Herbaceous Plants of Rostov Oblast. Arid Ecosyst 13, 65–72 (2023). https://doi.org/10.1134/S2079096123010031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079096123010031

Keywords:

Navigation