Skip to main content
Log in

The mtDNA-STING pathway plays an important role in both navitoclax- and S63845-induced autophagy and enhances cell death

  • Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Targeting BCL2 family proteins to induce cancer cell death has been successful in the treatment of cancer. BH3 mimetics such as ABT-737 not only induce cell death, but also activate autophagy. The molecular mechanism by which the BH3 mimetics induce autophagy is still controversial. In this study, we show that the BCL2/BCLXL/BCLw inhibitor navitoclax and the MCL1 inhibitor S63845 induce both apoptosis and autophagy in mouse embryonic fibroblasts (MEFs) and leukemia cell lines, while autophagy induced by navticlax and S63845 in leukemia cell lines requires the inhibition of caspase activities. Further experiments demonstrate that the autophagy induced by navitoclax or S63845 does not depend on Beclin 1, but downstream of Bax/Bak. Moreover, both navitoclax and S63845 treatment induce mtDNA release in MEFs, which activates STING and thereby induces autophagy, while STING KO inhibits both navitoclax- and S63845-induced autophagy. Furthermore, STING KO diminishes navitoclax- or S63845-induced apoptosis, suggesting that STING activation enhances rather than inhibits apoptosis. Thus, our findings provide new insights into the regulations of navitoclax- or S63845-induced autophagy and cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

This study includes no data deposited in external repositories. All the raw data reported in this paper will be shared by the lead contact upon request.

References

  • Aarreberg LD, Esser-Nobis K, Driscoll C, Shuvarikov A, Roby JA, Gale M Jr. Interleukin-1b induces mtDNA release to activate innate immune signaling via cGAS-STING. Mol Cell. 2019;74:801–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abe T, Harashima A, Xia T, Konno H, Konno K, Morales A, Ahn J, Gutman D, Barber GN. STING recognition of cytoplasmic DNA instigates cellular defense. Mol Cell. 2013;50:5–15.

    Article  CAS  PubMed  Google Scholar 

  • Ashley N, Harris D, Poulton J. Detection of mitochondrial DNA depletion in living human cells using PicoGreen staining. Exp Cell Res. 2005;303:432–46.

    Article  CAS  PubMed  Google Scholar 

  • Avsec D, Jakoš Djordjevič AT, Kandušer M, Podgornik H, Škerget M, Mlinarič-Raščan I. Targeting autophagy triggers apoptosis and complements the action of venetoclax in chronic lymphocytic leukemia cells. Cancers (Basel). 2021;13:4557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnett KC, Coronas-Serna JM, Zhou W, Ernandes MJ, Cao A, Kranzusch PJ, Kagan JC. Phosphoinositide interactions position cGAS at the plasma membrane to ensure efficient distinction between self- and viral DNA. Cell. 2019;176:1432–1446.e1411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzun K, Gornowicz A, Lesyk R, Bielawski K, Bielawska A. Autophagy modulators in cancer therapy. Int J Mol Sci. 2021;22:5804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correia C, Lee SH, Meng XW, Vincelette ND, Knorr KL, Ding H, Nowakowski GS, Dai H, Kaufmann SH. Emerging understanding of Bcl-2 biology: Implications for neoplastic progression and treatment. Biochim Biophys Acta. 2015;1853:1658–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15:49–63.

    Article  CAS  PubMed  Google Scholar 

  • Dai H, Ding H, Meng XW, Peterson KL, Schneider PA, Karp JE, Kaufmann SH. Constitutive BAK activation as a determinant of drug sensitivity in malignant lymphohematopoietic cells. Genes Dev. 2015;29:2140–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai H, Ding H, Peterson KL, Meng XW, Schneider PA, Knorr KLB, Kaufmann SH. Measurement of BH3-only protein tolerance. Cell Death Differ. 2018;25:282–93.

    Article  CAS  PubMed  Google Scholar 

  • Dai H, Meng XW, Lee SH, Schneider PA, Kaufmann SH. Context-dependent Bcl-2/Bak interactions regulate lymphoid cell apoptosis. J Biol Chem. 2009;284:18311–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai H, Smith A, Meng XW, Schneider PA, Pang Y-P, Kaufmann SH. Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization. J Cell Biol. 2011;194:39–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David MS, Roberts AW, Seymour JF, Pagel JM, Kahl BS, Wierda WG, Puvvada S, Kipps TJ, Anderson MA, Salem AH, et al. Phase I first-in-human study of venetoclax in patients with relapsed or refractory non-Hodgkin lymphoma. J Clin Oncol. 2017;35:826–33.

    Article  Google Scholar 

  • Decout A, Katz JD, Venkatraman S, Ablasser A. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol. 2021;21:548–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denton D, Shavage BV, Simin R, Baehrecke EH, Kumar S. Larval midgut destruction in Drosophila: Not dependent on caspases but suppressed by the loss of autophagy. Autophagy. 2010;6:163–5.

    Article  PubMed  Google Scholar 

  • Diepstraten ST, Anderson MA, Czabotar PE, Lessene G, Strasser A, Kelly GL. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer. 2022;22:45–64.

    Article  CAS  PubMed  Google Scholar 

  • Erlich S, Mizrachy L, Segev O, Lindenboim L, Zmira O, Adi-Harel S, Hirsch JA, Stein R, Pinkas-Kramarski R. Differential interactions between Beclin 1 and Bcl-2 family members. Autophagy. 2007;3:561–8.

    Article  CAS  PubMed  Google Scholar 

  • Frenzel A, Labi V, Chmelewskij W, Ploner C, Geley S, Fiegl H, Tzankov A, Villunger A. Suppression of B-cell lymphomagenesis by the BH3-only proteins Bmf and Bad. Blood. 2010;115:995–1005.

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25:486–541.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao P, Bauvy C, Souquère S, Tonelli G, Liu L, Zhu Y, Qiao Z, Bakula D, Proikas-Cezanne T, Pierron G, et al. The Bcl-2 homology domain 3 mimetic gossypol induces both Beclin 1-dependent and Beclin 1-independent cytoprotective autophagy in cancer cells. J Biol Chem. 2010;285:25570–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221:3–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gui X, Yang H, Li T, Tan X, Shi P, Li M, Du F, Chen ZJ. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature. 2019;567:262–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulen MF, Koch U, Haag SM, Schuler F, Apetoh L, Villunger A, Radtke F, Ablasser A. Signaling strength determines proapoptotic functions of STING. Nat Commun. 2017;8:427.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo Q, Chen X, Chen J, Zheng G, Xie C, Wu H, Miao Z, Lin Y, Wang X, Gao W, et al. STING promotes senescence, apoptosis, and extracellular matrix degradation in osteoarthritis via the NF-kB signaling pathway. Cell Death Dis. 2021;12:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu L, Chen M, Chen X, Zhao C, Fang Z, Wang H, Dai H. Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate. Cell Death Dis. 2020;11:281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Okamoto K, Yu C, Sinicrope FA. P62/sequestosome-1 up-regulation promotes ANB-263-induced caspase-8 aggregation/activation on the autophagosome. J Biol Chem. 2013;288:33654–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalkavan H, Green DR. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ. 2018;25:46–55.

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy. 2021;17:1–382.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kotschy A, Szlavik Z, Murray J, Davidson J, Maragno AL, Le Toumelin-Braizat G, Chanrion M, Kelly GL, Gong JN, Moujalled DM, et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature. 2016;538:477–82.

    Article  PubMed  Google Scholar 

  • Kumar S, Kaufman JL, Gasparetto C, Mikhael J, Vij R, Pegourie B, Benboubker L, Facon T, Amiot M, Moreau P, et al. Efficacy of venetoclax as targeted therapy for relapsed/refractory t(11;14) multiple myeloma. Blood. 2017;130:2401–9.

    Article  CAS  PubMed  Google Scholar 

  • Lian J, Wu X, He F, Karnak D, Tang W, Meng Y, Xiang D, Ji M, Lawrence TS, Xu L. A natural BH3 mimetic induces autophagy in apoptosis-resistant prostate cancer via modulating Bcl-2-Beclin1 interaction at endoplasmic reticulum. Cell Death Diff. 2011;18:60–71.

    Article  CAS  Google Scholar 

  • Lindqvist LM, Frank D, McArthur K, Dite TA, Lazarou M, Oakhill JS, Kile BT, Vaux DL. Autophagy induced during apoptosis degrades mitochondria and inhibits type I interferon secretion. Cell Death Differ. 2018;25:784–96.

    Article  PubMed  Google Scholar 

  • Lindqvist LM, Heinlein M, Huang DCS, Vaux DL. Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibiting Bax and Bak. Proc Natl Acad Sci U S A. 2014;111:8512–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Hou X, Wu W, Zanfagnin V, Li Y, Correia C, Zhao Z, Zhao C, Liu Z, Zhang T, et al. Constitutive BAK/MCL1 complexes predict paclitaxel and S63845 sensitivity of ovarian cancer. Cell Death Dis. 2021;12:789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Wu H, Wang C, Li Y, Tian H, Siraj S, Sehgal SA, Wang X, Wang J, Shang Y, et al. STING directly activates autophagy to tune the innate immune response. Cell Death Differ. 2019;26:1735–49.

    Article  CAS  PubMed  Google Scholar 

  • Lok SW, Whittle JR, Vaillant F, Teh CE, Lo LL, Policheni AN, Bergin ART, Desai J, Ftouni S, Gandolfo LC, et al. A phase Ib dose-escalation and expansion study of the BCL2 inhibitor venetoclax combined with tamoxifen in ER and BCL-2 positive metastatic breast cancer. Cancer Discov. 2019;9:354–69.

    Article  CAS  PubMed  Google Scholar 

  • Maiuri MC, Criollo A, Tasdemir E, Vicencio JM, Tajeddine N, Hickman JA, Geneste O, Kroemer G. BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy. 2007;3:374–6.

    Article  CAS  PubMed  Google Scholar 

  • Malik SA, Orhon I, Morselli E, Criollo A, Shen S, Mariño G, BenYounes A, Bénit P, Rustin P, Maiuri MC, et al. BH3 mimetics activate multiple pro-autophagic pathways. Oncogene. 2011;30:3918–29.

    Article  CAS  PubMed  Google Scholar 

  • McArthur K, Whitehead LW, Heddleston JM, Li L, Padman BS, Oorschot V, Geoghegan ND, Chappaz S, Davidson S, San Chin H, et al. BAK/BAX macropores facilitate mitochondrial hernitation and mtDNA efflux during apoptosis. Science. 2018;359:eaao6047.

    Article  PubMed  Google Scholar 

  • Meng XW, Lee SH, Dai H, Loegering D, Yu C, Flatten K, Schneider P, Dai NT, Kumar SK, Smith BD, et al. Mcl-1 as a buffer for proapoptotic Bcl-2 family members during TRAIL-induced apoptosis: a mechanistic basis for sorafenib (Bay 43-9006)-induced TRAIL sensitization. J Biol Chem. 2007;282:29831–46.

    Article  CAS  PubMed  Google Scholar 

  • Minn AJ, Rudin CM, Boise LH, Thompson CB. Expression of bcl-xL can confer a multidrug resistance phenotype. Blood. 1995;86:1903–10.

    Article  CAS  PubMed  Google Scholar 

  • Mulcahy Levy JM, Zahedi S, Griesinger AM, Morin A, Davies KD, Aisner DL, Kleinschmidt-DeMasters BK, Fitzwalter BE, Goodall ML, Thorburn J, et al. Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors. Elife. 2017;6:e19671.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pagotto A, Pilotto G, Mazzoldi EL, Nicoletto MO, Frezzini S, Pastò A, Amadori A. Autophagy inhibition reduces chemoresistance and tumorigenic potential of human ovarian cancer stem cells. Cell Death Dis. 2017;8:e2943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedro JM, Wei Y, Sica V, Maiuri MC, Zou Z, Kroemer G, Levine B. BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy. Autophagy. 2015;11:452–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrasek J, Iracheta-Vellve A, Csak T, Satishchandran A, Kodys K, Kurt-Jones EA, Fitzgerald KA, Szabo G. STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease. Proc Natl Acad U S A. 2013;110:16544–9.

    Article  CAS  Google Scholar 

  • Reed JC. Bcl-2-family proteins and hematologic malignancies: history and future prospects. Blood. 2008;111:3322–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reljic B, Conos S, Lee EF, Garnier J-M, Dong L, Lessene G, Fairlie WD, Vaux DL, Lindqvist LM. BAX-BAK1-independent LC3B lipidation by BH3 mimetics is unrelated to BH3 mimetic activity and has only minimal effects on autophagic flux. Autophagy. 2016;12:1083–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rongvaux A, Jackson R, Harman CC, Li T, West AP, de Zoete MR, Wu Y, Yordy B, Lakhani SA, Kuan CY, Taniguchi T, et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell. 2014;159:1563–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarosiek KA, Ni Chonghaile T, Letai A. Mitochondria: gatekeepers of response to chemotherapy. Trends Cell Biol. 2013;23:612–9.

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019;20:175–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, Dayton BD, Ding H, Enschede SH, Fairbrother WJ, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19:202–8.

    Article  CAS  PubMed  Google Scholar 

  • Tai WT, Shiau CW, Chen HL, Liu CY, Lin C, Cheng AL, Chen PJ, Chen KF. Mcl-1-dependent activation of Beclin 1 mediates autophagic cell death induced by sorafenib and SC-59 in hepatocellular carcinoma cells. Cell Death Dis. 2013;4:e485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S, Johnson EF, Marsh KC, Mitten MJ, Nimmer P, et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 2008;68:3421–8.

    Article  CAS  PubMed  Google Scholar 

  • Wakatsuki S, Tokunaga S, Shibata M, Araki T. GSK3B-mediated phosphorylation of MCL1 regulates axonal autophagy to promote Wallerian degeneration. J Cell Biol. 2017;216:477–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, Bestwick M, Duguay BA, Raimundo N, MacDuff DA, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 2015;520:553–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White MJ, McArthur K, Metcalf D, Lane RM, Cambier JC, Herold MJ, van Delft MF, Bedoui S, Lessene G, Ritchie MF, et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell. 2014;159:1549–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson WH, O’Connor OA, Czuczman MS, LaCasce AS, Gerecitano JF, Leonard JP, Tulpule A, Dunleavy K, Xiong H, Chiu YL, et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol. 2010;11:1149–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodward JJ, Iavarone AT, Portnoy DA. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science. 2010;328:1703–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie C, Ginet V, Sun Y, Koike M, Zhou K, Li T, Li H, Li Q, Wang X, Uchiyama Y, et al. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury. Autophagy. 2016;12:410–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye K, Meng WX, Sun H, Wu B, Chen M, Pang YP, Gao J, Wang H, Wang J, Kaufmann SH, et al. Characterization of an alternative BAK-binding site for BH3 peptides. Nat Commun. 2020;11:3301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Tang L-H, Lu J, Xu L-M, Cheng B-L, Xiong J-X. ABT-263 enhanced bacterial phagocytosis of macrophages in aged mouse through Beclin-1-dependent autophagy. BMC Geriatr. 2021;21:225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank for Dr. Scott Kaufmann from Mayo Clinic for the cell lines, plasmids and helpful discussions. We thank for Dr. Shengbing Huang from Mayo Clinc for plasmids.

Funding

This work is supported by the National Natural Science Foundation of China (No. 31970701), the Anhui Provincial Key R&D Program (No. 202104a07020007), and the co-operative grants from Anhui Medical University and Center of Medical Physics and Technology (No. LHJJ202006, No. LHJJ202007).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, H.D. and J.X; Investigation, J.J., M.L., Y.L. and H.D.; Writing, H.D., J.X., and J.J.; Review & Editing, H.D., J.J., M.L., Y.L., and J.X.

Corresponding authors

Correspondence to Jun Xiao or Haiming Dai.

Ethics declarations

Ethical approval

Not relevant.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

Supplemental Information can be found online.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, J., Li, M., Li, Y. et al. The mtDNA-STING pathway plays an important role in both navitoclax- and S63845-induced autophagy and enhances cell death. Cell Biol Toxicol 39, 2821–2839 (2023). https://doi.org/10.1007/s10565-023-09804-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-023-09804-x

Keywords

Navigation