Skip to main content
Log in

Influence diagnostics in Gaussian spatial–temporal linear models with separable covariance

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

In recent decades, there has been a growing interest in modeling spatial–temporal data, which can be found in many fields including geoscience, meteorology and ecology, among many others. The spatial–temporal dependence structure modeling, using a random field approach, is an indispensable tool to estimate the parameters that define this structure. However, this estimation may be greatly affected by the presence of atypical observations in the sampled data. Our proposal is to extend the results of Uribe-Opazo et al. (J Appl Stat 39:615–630, 2012) and De Bastiani et al. (Test 24:322–340, 2015) in the studies of diagnostic techniques to assess the sensitivity of the maximum likelihood estimators to small perturbations in the response variable for the spatial–temporal linear models with separable covariance. The method’s viability is illustrated in a simulation study, and in an application to eggs anchovy (Engraulis ringens) abundance data in ichthyoplankton surveys from the northern zone of Chile. The results show that the proposed methodology allows to detect influential observations in a spatial-temporal data set when their covariances are separable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amani A, Lebel T (1997) Lagrangian kriging for the estimation of Sahelian rainfall at small time steps. J Hydrol 192:125–157

    Article  Google Scholar 

  • Anderson T (1973) Asymptotically efficient estimation of covariance matrices with linear structure. Ann Stat 1(1):135–141

    Article  Google Scholar 

  • Assumpção RAB, Uribe-Opazo MA, Galea M (2011) Local influence for spatial analysis of soil physical properties and soybean yield using Student-t distribution. Rev Bras Ciência do Solo 35:1917–1926

    Article  Google Scholar 

  • Assumpção RAB, Uribe-Opazo MA, Galea M (2014) Analysis of local influence in geostatistics using Student-t distribution. J Appl Stat 41:2323–2341

    Article  Google Scholar 

  • Aziz Ezzat A, Jun M, Ding Y (2019) 09. Spatio-temporal short-term wind forecast: a calibrated regime-switching method. Ann Appl Stat 13:1484–1510. https://doi.org/10.1214/19-AOAS1243

    Article  Google Scholar 

  • Bai L, Feng J, Li Z, Han C, Yan F, Ding Y (2022) 06. Spatiotemporal dynamics of surface ozone and its relationship with meteorological factors over the Beijing–Tianjin–Tangshan region, China, from 2016 to 2019. Sensors 22:4854. https://doi.org/10.3390/s22134854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barlow A, Rohrbeck C, Sharkey P, Shooter R, Simpson E (2018) 09. A Bayesian spatio-temporal model for precipitation extremes-stor team contribution to the eva2017 challenge. Extremes. https://doi.org/10.1007/s10687-018-0330-z

    Article  Google Scholar 

  • Bevilacqua M, Morales-Oñate V (2018) GeoModels: a package for geostatistical Gaussian and non Gaussian data analysis. R package version 1.0.3-4

  • Bonicelli P, J, Días RJ, Cifuentes OU, Osorio ZF, Bustamante M, Berger MT, Grendi CC, Claramunt QG, Herrera UG, Moreno GP, Azócar SC, Catasti BV (2021) Informe final. Condiciones bio-oceaográficas y evaluaciń del stock desovante de anchoveta entre las regiones de Arica y Parinacota y Antofagasta, año 2020. IFOP

  • Bonicelli P, J, Días RJ, Cifuentes OU, Osorio ZF, Bustamante MA, Cornejo DM, Grendi CC, Herrera CL, Santander PE, Claramunt QG, Angulo AJ, Herrera UG, Moreno GP, Azócar SC, Catasti BV, Leiva DF (2020) Informe final. Condiciones bio-oceaográficas y evaluaciń del stock desovante de anchoveta entre las regiones de Arica y Parinacota y Antofagasta, año 2019. IFOP

  • Bonicelli P, J, Días RJ, Cifuentes OU, Osorio ZF, Bustamante MA, Pizarro RM, Grendi CC, Herrera CL, Santander PE, Claramunt QG, Angulo AJ, Herrera UG, Moreno GP, Azócar SC, Catasti BV (2019) Informe final. Condiciones bio-oceaográficas y evaluación del stock de anchoveta entre la XV y II regiones, año 2018. IFOP

  • Borssoi JA, De Bastiani F, Uribe-Opazo MA, Galea M (2011) Local influence of explanatory variables in Gaussian spatial linear models. Chil J Stat 2:29–38

    Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc Ser B 26(2):211–252

    Google Scholar 

  • Carroll R, Chen R, George E, Li T, Newton H, Schmiediche H, Wang N (1997) Ozone exposure and population density in Harris county, Texas (with discussion). J Am Stat Assoc 93:392–415

    Article  Google Scholar 

  • Chatterjee S, Hadi A (1998) Sensitivity analysis in linear regression. Wiley, New York

    Google Scholar 

  • Christakos G (2000) Modern spatiotemporal geostatistics, 2nd edn. Oxford Univ. Press, Oxford

    Google Scholar 

  • Christensen R (1992) Prediction diagnostics for spatial linear models. Biometrika 79:583–591

    Article  Google Scholar 

  • Christensen R (1993) Covariance function diagnostics for spatial linear models. Math Geol 25:145–160

    Article  Google Scholar 

  • Claramunt G, Castro L, Cubillos L, Hirche H, Perez G, Braun M (2012) Inter-annual reproductive trait variation and spawning habitat preferences of Engraulis Ringens off northern Chile. Rev Biol Mar Oceanogr 47(2):227–243

    Article  Google Scholar 

  • Cook R (1977) Detection of influential observation in linear regression. Technometrics 19:15–18

    Google Scholar 

  • Cook R (1986) Assessment of local influence. J R Stat Soc Ser B 48:133–169

    Google Scholar 

  • Cook R, Weisberg S (1982) Residuals and influence in regression. Chapman & Hall, London

    Google Scholar 

  • Cressie N (1994) Comment on “an approach to statistical spatial-temporal modeling of meteorological fields’’ by M. S. Handcock and J. R. Wallis. J Am Stat Assoc 89:379–382

    Google Scholar 

  • Cressie N, Shi T, Kang EL (2010) Fixed rank filtering for spatio-temporal data. J Comput Graph Stat 19:724–745

    Article  Google Scholar 

  • Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, New York

    Google Scholar 

  • De Bastiani F, Mariz de Aquino A, Uribe-Opazo M, Galea M (2015) Influence diagnostics in elliptical spatial linear models. Test 24:322–340

    Article  Google Scholar 

  • Diamond P (1984) Robustness of variograms and conditioning of kriging matrices. Math Geol 16:809–822

    Article  Google Scholar 

  • Fassò A, Cameletti M, Nicolis O (2007) Air quality monitoring using heterogeneous networks. Environmetrics 18:245–264

    Article  Google Scholar 

  • Galea M, Paula GA, Bolfarine H (1997) Local influence in elliptical linear regression models. The Statistician 46:71–79

    Article  Google Scholar 

  • Garcia-Papani F, Uribe-Opazo MA, Leiva V, Aykroyd RG (2017) Birnbaum–Saunders spatial modelling and diagnostics applied to agricultural engineering data. Stoch Environ Res Risk Assess 31(1):105–124

    Article  Google Scholar 

  • Gneiting T (2002) Nonseparable, stationary covariance functions for space-time data. J Am Stat Assoc 97(458):590–600

    Article  Google Scholar 

  • Goodall C, Mardia KV (1994) Challenges in multivariate spatio-temporal modeling. In: Proceedings of the xviith international biometric conference. Volume 39, pp 1–17

  • Grzegozewski DM, Uribe-Opazo MA, De Bastiani F, Galea M (2013) Local influence when fitting Gaussian spatial linear models: an agriculture application. Ciência e Investigação Agrária 40:235–252

    Google Scholar 

  • Guttorp P, Meiring W, Sampson PD (1994) A space-time analysis of ground-level ozone. Environmetrics 5:241–254

    Article  Google Scholar 

  • Haslett J, Raftery A (1989) Space-time modelling with long-memory dependence: assessing Ireland’s wind power resource. Appl Stat 38:1–50

    Article  Google Scholar 

  • Heaton M, Gelfand A (2012) Kernel averaged predictors for spatio-temporal regression models. Spat Stat 2:15–32. https://doi.org/10.1016/j.spasta.2012.05.001

  • Hering A, Genton M (2010) 03. Powering up with space-time wind forecasting. J Am Stat Assoc 105:92–104. https://doi.org/10.1198/jasa.2009.ap08117

    Article  CAS  Google Scholar 

  • Huang H, Hsu N (2004) Modeling transport effects on ground-level ozone using a non-stationary space-time model. Environmetrics 15:251–268

    Article  CAS  Google Scholar 

  • Johnson SR, Heaps SE, Wilson KJ, Wilkinson DJ (2021) Bayesian spatio-temporal model for high-resolution short-term forecasting of precipitation fields

  • Kyriakidis PC, Journal AG (1999) Geostatistical space-time models: a review. Math Geol 31:651–684

    Article  Google Scholar 

  • Li L, Jiehao Z, Qiu W, Wang J, Fang Y (2017) 0.5. An ensemble spatiotemporal model for predicting pm2.5 concentrations. Int J Environ Res Public Health 14:549. https://doi.org/10.3390/ijerph14050549

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindström J, Szpiro A, Sampson P, Oron A, Richards M, Larson T, Sheppard L (2014) 09. A flexible spatio-temporal model for air pollution with spatial and spatio-temporal covariates. Environ Ecol Stat 21:411–433. https://doi.org/10.1007/s10651-013-0261-4

    Article  CAS  PubMed  Google Scholar 

  • Liu S (2000) On local influence in elliptical linear regression models. Stat Pap 41:211–224

    Article  Google Scholar 

  • Matérn B (1986) Lecture Notes in Statistics, vol 36, 2nd edn. Springer, Berlin

    Google Scholar 

  • Meiring W, Sampson PD, Gutterop P (1998) Space-time estimation of grid-cell hourly ozone levels for assessment of a deterministic model. Environ Ecol Stat 5:197–222

    Article  Google Scholar 

  • Minasny B, McBratney A (2005) The matérn function as a general model for soil variograms. Geoderma 128(3–4):192–207

    Article  Google Scholar 

  • Nicolis O, Diaz M, Sahu K, Marin J (2019) Bayesian spatio-temporal modelling for estimating short-term exposure to air pollution in Santiago De Chile. Environmetrics 30:e2574

    Article  CAS  Google Scholar 

  • Osorio F, Paula GA, Galea M (2007) Assessment of local influence in elliptical linear models with longitudinal structure. Comput Stat Data Anal 51:4354–4368

    Article  Google Scholar 

  • Poon W, Poon Y (1999) Conformal normal curvature and assessment of local influence. J R Stat Soc Ser B 61:51–61

    Article  Google Scholar 

  • R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rychlik I (2015) 01. Spatio-temporal model for wind speed variability. Annales de l’Institut de Statistique de l’Universite de Paris, ISSN: 1626-1607 59: 25–55

  • Sahu S, Nicolis O (2008) An evaluation of European air pollution regulations for particulate matter monitored from a heterogeneous network. Environmetrics 20(8):943–961

    Google Scholar 

  • Serra R, Aguayo M, Rojas O, Cañón J, Inostroza F (1979) Anchoveta Engraulis ringens (jenyns) teleostomi clupeiformes engraulidae. In: Estado actual de las principales pesquerías nacionales. bases para un desarrollo pesquero: I peces. CORFO-IFOP (eds.) AP 79-18: 1–52

  • Sigrist F, Künsch H, Stahel W (2011) 02. A dynamic nonstationary spatio-temporal model for short term prediction of precipitation. Ann Appl Stat. https://doi.org/10.1214/12-AOAS564

    Article  Google Scholar 

  • Smith R, Kolenikov S, Cox L (2003) 12. Spatio-temporal modeling of pm2.5 data with missing values. J Geophys Res. https://doi.org/10.1029/2002JD002914

    Article  Google Scholar 

  • Stauffer R, Mayr G, Messner J, Umlauf N, Zeileis A (2016) 11. Spatio-temporal precipitation climatology over complex terrain using a censored additive regression model. Int J Climatol. https://doi.org/10.1002/joc.4913

    Article  PubMed  PubMed Central  Google Scholar 

  • Stroud J, Müller P, Sansó B (2001) 02. Dynamic models for spatiotemporal data. J R Stat Soc Ser B 63:673–689. https://doi.org/10.1111/1467-9868.00305

    Article  Google Scholar 

  • Uribe-Opazo M, De Bastiani F, Galea M, Schemmer R, Botinha R (2020) Influence diagnostics on a reparameterized \(t\)-student spatial linear model. Spat Stat 41:100481

    Article  Google Scholar 

  • Uribe-Opazo MA, Borssoi JM, Galea M (2012) Influence diagnostics in gaussian spatial linear models. J Appl Stat 39:615–630

    Article  Google Scholar 

  • Valenzuela V, J, Moreno P, Azócar C, Cifuentes U, Grendi C, Claramunt G, Herrera G, Díaz E, Bohm G, Saavedra-Nievas J, Pizarro M (2016) Informe final. Evaluación de stock desovante de anchoveta en la XV, I y II y regiones, año 2014. IFOP

  • Warnes J (1986) A sensitivity analysis for universal kriging. Math Geol 18:653–676

    Google Scholar 

  • Wikle C, Zammit-Mangion A, Cressie N (2019) Spatio-temporal statistics with R. Chapman & Hall/CRC the R series. CRC Press, Taylor & Francis Group, London

    Book  Google Scholar 

  • Yang G, Liu Y, Li X (2020) 04. Spatiotemporal distribution of ground-level ozone in china at a city level. Sci Rep 10:7229. https://doi.org/10.1038/s41598-020-64111-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanosky J, Paciorek C, Laden F, Hart J, Puett R, Liao D, Suh H (2014) 08. Spatio-temporal modeling of particulate air pollution in the conterminous united states using geographic and meteorological predictors. Environ Health 13:63. https://doi.org/10.1186/1476-069X-13-63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H (2004) Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics. J Am Stat Assoc 99(465):250–261

    Article  Google Scholar 

  • Zhang H (2012) Asymptotics and computation for spatial statistics. In: Porcu E, Montero J-M, Schlather M (eds) Advances and challenges in space-time modelling of natural events. Springer, Berlin Heidelberg, pp 239–252

    Chapter  Google Scholar 

  • Zhang H, El-Shaarawi A (2010) On spatial skew-gaussian processes and applications. Environmetrics 21:33–47

    CAS  Google Scholar 

  • Zhang H, Zimmerman D (2007) Hybrid estimation of semivariogram parameters. Math Geol 39(2):247–260

    Article  Google Scholar 

  • Zhu H, Ibrahim J, Lee S, Zhang H (2007) Perturbation selection and influence measures in local influence analysis. Ann Stat 35(6):2565–2588

    Article  Google Scholar 

  • Zhu H, Lee S (2001) Local influence for incomplete-data models. J R Stat Soc Ser B B63:111–126

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to the Instituto de Fomento Pesquero (IFOP), which provided the data that was used in the application of this paper, especially to the staff that participated of the anchoveta Spawning Monitoring Project (MPDH) ejecuted by IFOP and funded by the Chilean Ministry of Economy, Promotion and Tourism (Asesoría Integral en Pesca y Acuicultura, ASIPA). Juan Carlos Saavedra-Nievas acknowledges funding from the CONICYT (Comisión Nacional de Investigación Científica y Tecnológica, Chile) for its scholarship "Becas de Doctorado Nacional" for PhD studies (CONICYT-PCHA/Doctorado Nacional/2014-21140088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orietta Nicolis.

Additional information

Communicated by Luiz Duczmal.

Appendix A: The observed information matrix

Appendix A: The observed information matrix

The observed information matrix for Gaussian spatial–temporal linear models is obtained from the second derivative of the loglikelihood function (9) and defined by \(\mathrm {I(\varvec{\theta })}=\partial ^2{\mathcal {L}}(\varvec{\theta })/\partial \varvec{\theta }\partial \varvec{\theta }^T=-{{\textbf{L}}}(\varvec{\theta })\) evaluated at \(\varvec{\theta }=\hat{\varvec{\theta }}\), where \({{\textbf{L}}}(\varvec{\theta })\) is the Hessian matrix given by

$$\begin{aligned} {{\textbf{L}}}(\varvec{\theta }) =-\frac{\partial ^2{\mathcal {L}}(\varvec{\theta })}{\partial \varvec{\theta }\partial \varvec{\theta }^\textrm{T}} =\begin{pmatrix} {{\textbf{L}}}_{\beta \beta } &{} {{\textbf{L}}}_{\beta \phi }\\ {{\textbf{L}}}_{\phi \beta } &{} {{\textbf{L}}}_{\phi \phi } \end{pmatrix}, \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} {{\textbf{L}}}_{\beta \beta }&= \frac{\partial ^2}{\partial \varvec{\beta }\partial \varvec{\beta }^\textrm{T}}\big ({{\textbf{X}}}^\textrm{T}\varvec{\Sigma }^{-1}\pmb {\epsilon }\big ) = -{{\textbf{X}}}^\textrm{T}\varvec{\Sigma }^{-1}{{\textbf{X}}},\\ {{\textbf{L}}}_{\beta \phi }&= \big (\mathbf {{L}}_{\beta \phi _1}, {{\textbf{L}}}_{\beta \phi _2}, {{\textbf{L}}}_{\beta \phi _3}\big )^T,\\ {{\textbf{L}}}_{\beta \phi _1}&= -{{\textbf{X}}}^\textrm{T}\varvec{\Sigma }^{-1}\frac{\partial \varvec{\Sigma }}{\partial \phi _1}\varvec{\Sigma }^{-1}\varvec{\epsilon } = -{{\textbf{X}}}^\textrm{T}\varvec{\Sigma }^{-1} \big ( {{\textbf{I}}}_s \otimes \mathbf {R_t}(\phi _3) \big ) \varvec{\Sigma }^{-1}\varvec{\epsilon },\\ {{\textbf{L}}}_{\beta \phi _2}&= -{{\textbf{X}}}^\textrm{T}\varvec{\Sigma }^{-1}\frac{\partial \varvec{\Sigma }}{\partial \phi _2}\varvec{\Sigma }^{-1}\varvec{\epsilon } = -{{\textbf{X}}}^\textrm{T}\varvec{\Sigma }^{-1} \big (\mathbf {R_s}(\tau ) \otimes \mathbf {R_t}(\phi _3) \big ) \varvec{\Sigma }^{-1}\varvec{\epsilon },\\ {{\textbf{L}}}_{\beta \phi _3}&= -{{\textbf{X}}}^\textrm{T}\varvec{\Sigma }^{-1}\frac{\partial \varvec{\Sigma }}{\partial \phi _3}\varvec{\Sigma }^{-1}\varvec{\epsilon } = -{{\textbf{X}}}^\textrm{T}\varvec{\Sigma }^{-1} \left( \big (\phi _1 {{\textbf{I}}}_s + \phi _2\mathbf {R_s}(\tau )\big ) \otimes \frac{\partial \mathbf {R_t}(\phi _3)}{\partial \phi _3}\right) \varvec{\Sigma }^{-1}\varvec{\epsilon },\\ {{\textbf{L}}}_{\phi \phi }&= \begin{pmatrix} {L}_{\phi _1} &{} {L}_{\phi _1\phi _2} &{} {L}_{\phi _1\phi _3}\\ {L}_{\phi _1\phi _2} &{} {L}_{\phi _2} &{} {L}_{\phi _2\phi _3}\\ {L}_{\phi _1\phi _3} &{} {L}_{\phi _2\phi _3} &{} {L}_{\phi _3},\\ \end{pmatrix}, \end{aligned} \end{aligned}$$

with elements,

$$\begin{aligned} \begin{aligned} L_{\phi _i\phi _j}&= \frac{1}{2}\text {tr}\Bigg [\varvec{\Sigma }^{-1}\left( \frac{\partial \varvec{\Sigma }}{\partial \phi _i} \varvec{\Sigma }^{-1} \frac{\partial \varvec{\Sigma }}{\partial \phi _j} - \frac{\partial ^2\varvec{\Sigma }}{\partial \phi _i\partial \phi _j}\right) \Bigg ]\\&\quad +\frac{1}{2}\varvec{\epsilon }^\textrm{T}\varvec{\Sigma }^{-1} \left( \frac{\partial ^2\varvec{\Sigma }}{\partial \phi _i\partial \phi _j} - \frac{\partial \varvec{\Sigma }}{\partial \phi _i} \varvec{\Sigma }^{-1} \frac{\partial \varvec{\Sigma }}{\partial \phi _j} - \frac{\partial \varvec{\Sigma }}{\partial \phi _j} \varvec{\Sigma }^{-1} \frac{\partial \varvec{\Sigma }}{\partial \phi _i} \right) \varvec{\Sigma }^{-1}\varvec{\epsilon }, \end{aligned} \end{aligned}$$

where \(\pmb {\epsilon }={{\textbf{Y}}}-{{\textbf{X}}}\varvec{\beta }\) and considering \(\varvec{\Sigma } = \varvec{\Sigma _s} \otimes \varvec{\Sigma _t} = \big (\phi _1 {{\textbf{I}}}_{n_s} + \phi _2 \mathbf {R_s}(\tau )\big ) \otimes \mathbf {R_t}(\phi _3)\) and

$$\begin{aligned}{} & {} \frac{\partial \varvec{\Sigma }}{\partial \phi _1} \\{} & {} \quad = {{\textbf{I}}}_s \otimes \mathbf {R_t}(\phi _3),\,\,\, \frac{\partial \varvec{\Sigma }}{\partial \phi _2} = \mathbf {R_s}(\tau ) \otimes \mathbf {R_t}(\phi _3),\,\,\, \frac{\partial \varvec{\Sigma }}{\partial \phi _3} = \left( \phi _1 {{\textbf{I}}}_s + \phi _2\mathbf {R_s}(\tau )\right) \otimes \frac{\partial \mathbf {R_t}(\phi _3)}{\partial \phi _3}, \end{aligned}$$

we have,

$$\begin{aligned} \frac{\partial ^2\varvec{\Sigma }}{\partial \phi _i\partial \phi _j}= \begin{pmatrix} \frac{\partial ^2\varvec{\Sigma }}{\partial \phi _1^2} &{} \frac{\partial ^2\varvec{\Sigma }}{\partial \phi _1\partial \phi _2} &{} \frac{\partial ^2\varvec{\Sigma }}{\partial \phi _1\partial \phi _3}\\ \frac{\partial ^2\varvec{\Sigma }}{\partial \phi _1\partial \phi _2} &{} \frac{\partial ^2\varvec{\Sigma }}{\partial \phi _2^2} &{} \frac{\partial ^2\varvec{\Sigma }}{\partial \phi _2\partial \phi _3}\\ \frac{\partial ^2\varvec{\Sigma }}{\partial \phi _1\partial \phi _3} &{} \frac{\partial ^2\varvec{\Sigma }}{\partial \phi _2\partial \phi _3} &{} \frac{\partial ^2\varvec{\Sigma }}{\partial \phi _3^2} \\ \end{pmatrix}, \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} \frac{\partial ^2\varvec{\Sigma }}{\partial \phi _1^2}&= \frac{\partial ^2\varvec{\Sigma }}{\partial \phi _2^2} = \frac{\partial ^2\varvec{\Sigma }}{\partial \phi _1\partial \phi _2} = {{\textbf{0}}},\\ \frac{\partial ^2\varvec{\Sigma }}{\partial \phi _3^2}&= \frac{\partial ^2}{\partial \phi _3^2}\bigg (\Big (\phi _1 {{\textbf{I}}}_s + \phi _2\mathbf {R_s}(\tau )\Big ) \otimes \frac{\partial \mathbf {R_t}(\phi _3)}{\partial \phi _3}\bigg )\\&= \Big (\phi _1 {{\textbf{I}}}_s + \phi _2\mathbf {R_s}(\tau )\Big ) \otimes \frac{\partial ^2\mathbf {R_t}(\phi _3)}{\partial \phi _3^2},\\ \frac{\partial ^2\varvec{\Sigma }}{\partial \phi _1\partial \phi _3}&= \frac{\partial ^2}{\partial \phi _1\partial \phi _3}\Bigl ({{\textbf{I}}}_s \otimes \mathbf {R_t}(\phi _3)\Bigr ) = {{\textbf{I}}}_s \otimes \frac{\partial \mathbf {R_t}(\phi _3)}{\partial \phi _3},\\ \frac{\partial ^2\varvec{\Sigma }}{\partial \phi _2\partial \phi _3}&= \frac{\partial ^2}{\partial \phi _2\partial \phi _3}\Bigl (\mathbf {R_s}(\tau ) \otimes \mathbf {R_t}(\phi _3)\Bigr ) = \mathbf {R_s}(\tau ) \otimes \frac{\partial \mathbf {R_t}(\phi _3)}{\partial \phi _3}.\\ \end{aligned} \end{aligned}$$

Therefore,

$$\begin{aligned}{} & {} L_{\phi _1} = \frac{1}{2}\text {tr}\bigg [\varvec{\Sigma }^{-1}\Big ({{\textbf{I}}}_s \otimes \mathbf {R_t}(\phi _3)\Big ) \varvec{\Sigma }^{-1} \Big ({{\textbf{I}}}_s \otimes \mathbf {R_t}(\phi _3)\Big ) \bigg ] \\{} & {} \quad +\frac{1}{2}\varvec{\epsilon }^\textrm{T}\varvec{\Sigma }^{-1} \left( -2\left( {{\textbf{I}}}_s \otimes \mathbf {R_t}(\phi _3)\right) \varvec{\Sigma }^{-1}\left( {{\textbf{I}}}_s \otimes \mathbf {R_t}(\phi _3)\right) \varvec{\Sigma }^{-1}\right) \varvec{\Sigma }^{-1}\varvec{\epsilon },\\{} & {} L_{\phi _2} = \frac{1}{2}\text {tr}\bigg [\varvec{\Sigma }^{-1} \Big (\mathbf {R_s}(\tau ) \otimes \mathbf {R_t}(\phi _3)\Big ) \varvec{\Sigma }^{-1} \Big (\mathbf {R_s}(\tau ) \otimes \mathbf {R_t}(\phi _3)\Big ) \bigg ] \\{} & {} \quad +\frac{1}{2}\varvec{\epsilon }^\textrm{T}\varvec{\Sigma }^{-1} \bigg (-2 \Big (\mathbf {R_s}(\tau ) \otimes \mathbf {R_t}(\phi _3)\Big )\varvec{\Sigma }^{-1}\Big (\mathbf {R_s}(\tau ) \otimes \mathbf {R_t}(\phi _3)\Big ) \bigg )\varvec{\Sigma }^{-1}\varvec{\epsilon },\\{} & {} L_{\phi _3} = \frac{1}{2}\text {tr}\Bigg [\varvec{\Sigma }^{-1}\bigg (\Big (\phi _1 {{\textbf{I}}}_s + \phi _2\mathbf {R_s}(\tau )\Big ) \otimes \frac{\partial \mathbf {R_t}(\phi _3)}{\partial \phi _3}\bigg )\\{} & {} \quad \varvec{\Sigma }^{-1} \bigg (\Big (\phi _1 {{\textbf{I}}}_s + \phi _2\mathbf {R_s}(\tau )\Big ) \otimes \frac{\partial \mathbf {R_t}(\phi _3)}{\partial \phi _3}\bigg ) \\{} & {} \quad -\bigg (\Big (\phi _1 {{\textbf{I}}}_s + \phi _2\mathbf {R_s}(\tau )\Big ) \otimes \frac{\partial \mathbf {R_t}(\phi _3)}{\partial ^2\phi _3^2}\bigg )\Bigg ]\\{} & {} \quad + \frac{1}{2}\varvec{\epsilon }^\textrm{T}\varvec{\Sigma }^{-1} \Bigg (\bigg (\Big (\phi _1 {{\textbf{I}}}_s + \phi _2\mathbf {R_s}(\tau )\Big ) \otimes \frac{\partial \mathbf {R_t}(\phi _3)}{\partial ^2\phi _3^2}\bigg ) \\{} & {} \quad 2 -\bigg (\Big (\phi _1 {{\textbf{I}}}_s + \phi _2\mathbf {R_s}(\tau )\Big ) \otimes \frac{\partial \mathbf {R_t}(\phi _3)}{\partial \phi _3}\bigg ) \varvec{\Sigma }^{-1} \bigg (\Big (\phi _1 {{\textbf{I}}}_s + \phi _2\mathbf {R_s}(\tau )\Big ) \otimes \frac{\partial \mathbf {R_t}(\phi _3)}{\partial \phi _3}\bigg )\Bigg )\varvec{\Sigma }^{-1}\varvec{\epsilon },\\{} & {} L_{\phi _1\phi _3} = \frac{1}{2}\text {tr}\Bigg [\varvec{\Sigma }^{-1}\bigg (\Big ({{\textbf{I}}}_s \otimes \mathbf {R_t}(\phi _3)\Big )\varvec{\Sigma }^{-1}\bigg (\Big (\phi _1 {{\textbf{I}}}_s + \phi _2\mathbf {R_s}(\tau )\Big ) \otimes \frac{\partial \mathbf {R_t}(\phi _3)}{\partial \phi _3}\bigg ) \\{} & {} \quad -\bigg ({{\textbf{I}}}_s \otimes \frac{\partial \mathbf {R_t}(\phi _3)}{\partial \phi _3}\bigg ) \Bigg ] + \frac{1}{2}\varvec{\epsilon }^\textrm{T}\varvec{\Sigma }^{-1} \Bigg (\bigg ({{\textbf{I}}}_s \otimes \frac{\partial \mathbf {R_t}(\phi _3)}{\partial \phi _3}\bigg ) \\{} & {} \quad -\bigg ({{\textbf{I}}}_s \otimes \mathbf {R_t}(\phi _3)\bigg )\varvec{\Sigma }^{-1}\bigg (\Big (\phi _1 {{\textbf{I}}}_s + \phi _2\mathbf {R_s}(\tau )\Big ) \otimes \frac{\partial \mathbf {R_t}(\phi _3)}{\partial \phi _3}\bigg ) \\{} & {} \quad -\bigg ({{\textbf{I}}}_s \otimes \frac{\partial \mathbf {R_t}(\phi _3)}{\partial \phi _3}\bigg )\varvec{\Sigma }^{-1}\bigg ({{\textbf{I}}}_s \otimes \mathbf {R_t}(\phi _3)\bigg )\Bigg )\varvec{\Sigma }^{-1}\varvec{\epsilon },\\{} & {} L_{\phi _2\phi _3} = \frac{1}{2}\text {tr}\Bigg [\varvec{\Sigma }^{-1}\bigg ( \Big (\mathbf {R_s}(\tau ) \otimes \mathbf {R_t}(\phi _3)\Big ) \varvec{\Sigma }^{-1} \bigg (\Big (\phi _1 {{\textbf{I}}}_s + \phi _2\mathbf {R_s}(\tau )\Big ) \otimes \frac{\partial \mathbf {R_t}(\phi _3)}{\partial \phi _3}\bigg ) \\{} & {} \quad -\bigg (\mathbf {R_s}(\tau )\otimes \frac{\partial \mathbf {R_t}(\phi _3)}{\partial \phi _3}\bigg )\Bigg ] + \frac{1}{2}\varvec{\epsilon }^\textrm{T}\varvec{\Sigma }^{-1} \Bigg ( \bigg (\mathbf {R_s}(\tau )\otimes \frac{\partial \mathbf {R_t}(\phi _3)}{\partial \phi _3}\bigg ) \\{} & {} \quad -\bigg (\mathbf {R_s}(\tau ) \otimes \mathbf {R_t}(\phi _3)\bigg ) \varvec{\Sigma }^{-1} \bigg (\Big (\phi _1 {{\textbf{I}}}_s + \phi _2\mathbf {R_s}(\tau )\Big ) \otimes \frac{\partial \mathbf {R_t}(\phi _3)}{\partial \phi _3}\bigg ) \\{} & {} \quad -\bigg (\Big (\phi _1 {{\textbf{I}}}_s + \phi _2\mathbf {R_s}(\tau )\Big ) \otimes \frac{\partial \mathbf {R_t}(\phi _3)}{\partial \phi _3}\bigg ) \varvec{\Sigma }^{-1} \bigg (\mathbf {R_s}(\tau ) \otimes \mathbf {R_t}(\phi _3)\bigg ) \Bigg )\varvec{\Sigma }^{-1}\varvec{\epsilon }, \end{aligned}$$

where \(L_{\phi _1\phi _2} = {{\textbf{0}}}\). Considering the Matérn model to describe the temporal variability given in (8), we have that \(\partial \mathbf {R_t}(\phi _3)/\partial \phi _3 = \left[ \partial r_{ij}/\partial \phi _3\right] \) and \(\partial ^2\mathbf {R_t}(\phi _3)/\partial \phi _3^2 = \left[ \partial ^2 r_{ij}/\partial \phi _3^2\right] \), where for

$$\begin{aligned}{} & {} K_\kappa ^{'}(u) = \partial K_\kappa (u)/\partial u = -(1/2)\left( K_{\kappa -1}(u) + K_{\kappa +1}(u)\right) ,\\{} & {} \frac{\partial r_{ij}}{\partial \phi _3} = -\frac{1}{\phi _3}\left( \kappa r_{ij} + \frac{1}{2^{\kappa -1}\Gamma (\kappa )}\left( \frac{\delta _{ij}}{\phi _3}\right) ^{\kappa +1}K^{'}_\kappa \left( \frac{\delta _{ij}}{\phi _3}\right) \right) , \end{aligned}$$

and

$$\begin{aligned}{} & {} K_\kappa ^{''}(u) = \partial ^2 K_\kappa (u)/\partial u^2 = (1/4)\left( K_{\kappa -2}(u) + 2K_{\kappa }(u) + K_{\kappa +2}(u)\right) ,\\{} & {} \quad \begin{aligned} \frac{\partial ^2 r_{ij}}{\partial \phi _3^2} =&\frac{\kappa (\kappa +1) r_{ij}}{\phi _3^2} + \\ {}&\left( \frac{1}{\phi _3^2 2^{\kappa - 1}\Gamma (\kappa )} \left( \frac{\delta _{ij}}{\phi _3}\right) ^{\kappa +1} \left( 2(\kappa +1) K^{'}_\kappa \left( \frac{\delta _{ij}}{\phi _3}\right) + \left( \frac{\delta _{ij}}{\phi _3}\right) K^{''}_\kappa \left( \frac{\delta _{ij}}{\phi _3}\right) \right) \right) , \end{aligned} \end{aligned}$$

with \(i \ne j, i,j=1,\ldots ,n\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saavedra-Nievas, J.C., Nicolis, O., Galea, M. et al. Influence diagnostics in Gaussian spatial–temporal linear models with separable covariance. Environ Ecol Stat 30, 131–155 (2023). https://doi.org/10.1007/s10651-023-00556-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10651-023-00556-9

Keywords

Navigation