Skip to main content

Advertisement

Log in

A biomechanical view of epigenetic tumor regulation

  • Review
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The occurrence and development of tumors depend on a complex regulation by not only biochemical cues, but also biomechanical factors in tumor microenvironment. With the development of epigenetic theory, the regulation of biomechanical stimulation on tumor progress genetically is not enough to fully illustrate the mechanism of tumorigenesis. However, biomechanical regulation on tumor progress epigenetically is still in its infancy. Therefore, it is particularly important to integrate the existing relevant researches and develop the potential exploration. This work sorted out the existing researches on the regulation of tumor by biomechanical factors through epigenetic means, which contains summarizing the tumor epigenetic regulatory mode by biomechanical factors, exhibiting the influence of epigenetic regulation under mechanical stimulation, illustrating its existing applications, and prospecting the potential. This review aims to display the relevant knowledge through integrating the existing studies on epigenetic regulation in tumorigenesis under mechanical stimulation so as to provide theoretical basis and new ideas for potential follow-up research and clinical applications.

Graphical Abstract

Mechanical factors under physiological conditions stimulate the tumor progress through epigenetic ways, and new strategies are expected to be found with the development of epidrugs and related delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Code availability

Not applicable.

References

  1. Lei, K., Kurum, A., Tang, L.: Mechanical immunoengineering of T cells for therapeutic applications. Acc. Chem. Res. 53, 2777–2790 (2020)

    Article  Google Scholar 

  2. Dong, Y., Zheng, Q., Wang, Z., Lin, X., You, Y., Wu, S., Wang, Y., Hu, C., Xie, X., Chen, J., Gao, D., Zhao, Y., Wu, W., Liu, Y., Ren, Z., Chen, R., Cui, J.: Higher matrix stiffness as an independent initiator triggers epithelial-mesenchymal transition and facilitates HCC metastasis. J. Hematol. Oncol. 12, 112 (2019)

    Article  Google Scholar 

  3. Yao, B., Niu, Y., Li, Y., Chen, T., Wei, X., Liu, Q.: High-matrix-stiffness induces promotion of hepatocellular carcinoma proliferation and suppression of apoptosis via miR-3682-3p-PHLDA1-FAS pathway. J. Cancer 11, 6188–6203 (2020)

    Article  Google Scholar 

  4. Chang, L., Azzolin, L., Di Biagio, D., Zanconato, F., Battilana, G., Lucon Xiccato, R., Aragona, M., Giulitti, S., Panciera, T., Gandin, A., Sigismondo, G., Krijgsveld, J., Fassan, M., Brusatin, G., Cordenonsi, M., Piccolo, S.: The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ. Nature 563, 265–269 (2018)

    Article  ADS  Google Scholar 

  5. Dawson, M.A., Kouzarides, T.: Cancer epigenetics: from mechanism to therapy. Cell 150, 12–27 (2012)

    Article  Google Scholar 

  6. Liu, Z., Zhou, Y., Liang, G., Ling, Y., Tan, W., Tan, L., Andrews, R., Zhong, W., Zhang, X., Song, E., Gong, C.: Circular RNA hsa_circ_001783 regulates breast cancer progression via sponging miR-200c-3p. Cell Death. Dis. 10, 55 (2019)

    Article  Google Scholar 

  7. Song, Y., Soto, J., Li, S.: Mechanical regulation of histone modifications and cell plasticity. Curr. Opin. Solid. State. Mater. Sci. 24, 100872 (2020)

    Article  ADS  Google Scholar 

  8. Cartron, P.F., Cheray, M., Bretaudeau, L.: Epigenetic protein complexes: the adequate candidates for the use of a new generation of epidrugs in personalized and precision medicine in cancer. Epigenomics 12, 171–177 (2020)

    Article  Google Scholar 

  9. Ghasemi, S.: Cancer’s epigenetic drugs: where are they in the cancer medicines? Pharmacogenomics J. 20, 367–379 (2020)

    Article  Google Scholar 

  10. Wolf, K.J., Shukla, P., Springer, K., Lee, S., Coombes, J.D., Choy, C.J., Kenny, S.J., Xu, K., Kumar, S.: A mode of cell adhesion and migration facilitated by CD44-dependent microtentacles. Proc. Natl. Acad. Sci. USA 117, 11432–11443 (2020)

    Article  ADS  Google Scholar 

  11. Patkunarajah, A., Stear, J.H., Moroni, M., Schroeter, L., Blaszkiewicz, J., Tearle, J.L., Cox, C.D., Fürst, C., Sánchez-Carranza, O., Ocaña Fernández, M.D.Á., Fleischer, R., Eravci, M., Weise, C., Martinac, B., Biro, M., Lewin, G.R., Poole, K.: TMEM87a/Elkin1, a component of a novel mechanoelectrical transduction pathway, modulates melanoma adhesion and migration. Elife 9, e53308 (2020)

  12. Park, J.S., Burckhardt, C.J., Lazcano, R., Solis, L.M., Isogai, T., Li, L., Chen, C.S., Gao, B., Minna, J.D., Bachoo, R., DeBerardinis, R.J., Danuser, G.: Mechanical regulation of glycolysis via cytoskeleton architecture. Nature 578, 621–626 (2020)

    Article  ADS  Google Scholar 

  13. Fuemmeler, B.F., Dozmorov, M.G., Do, E.K., Zhang, J.J., Grenier, C., Huang, Z., Maguire, R.L., Kollins, S.H., Hoyo, C., Murphy, S.K.: DNA methylation in babies born to nonsmoking mothers exposed to secondhand smoke during pregnancy: an epigenome-wide association study. Environ. Health Perspect. 129, 57010 (2021)

    Article  Google Scholar 

  14. Klemm, S.L., Shipony, Z., Greenleaf, W.J.: Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207–220 (2019)

    Article  Google Scholar 

  15. Traube, F.R., Carell, T.: The chemistries and consequences of DNA and RNA methylation and demethylation. RNA Biol. 14, 1099–1107 (2017)

    Article  Google Scholar 

  16. Wang, L., Lee, J.Y., Gao, L., Yin, J., Duan, Y., Jimenez, L.A., Adkins, G.B., Ren, W., Li, L., Fang, J., Wang, Y., Song, J., Zhong, W.: A DNA aptamer for binding and inhibition of DNA methyltransferase 1. Nucleic Acids Res. 47, 11527–11537 (2019)

    Google Scholar 

  17. Huang, W., Hu, H., Zhang, Q., Wang, N., Yang, X., Guo, A.Y.: Genome-wide DNA methylation enhances stemness in the mechanical selection of tumor-repopulating cells. Front. Bioeng. Biotechnol. 8, 88 (2020)

    Article  Google Scholar 

  18. Salgado, C., Oosting, J., Janssen, B., Kumar, R., Gruis, N., van Doorn, R.: Genome-wide characterization of 5-hydoxymethylcytosine in melanoma reveals major differences with nevus. Genes Chromosom. Cancer 59, 366–374 (2020)

    Article  Google Scholar 

  19. Dunn, J., Qiu, H., Kim, S., Jjingo, D., Hoffman, R., Kim, C.W., Jang, I., Son, D.J., Kim, D., Pan, C., Fan, Y., Jordan, I.K., Jo, H.: Flow-dependent epigenetic DNA methylation regulates gene expression and atherosclerosis. J. Clin. Invest. 124, 3187–3199 (2014)

    Article  Google Scholar 

  20. Jang, M., An, J., Oh, S.W., Lim, J.Y., Kim, J., Choi, J.K., Cheong, J.H., Kim, P.: Matrix stiffness epigenetically regulates the oncogenic activation of the Yes-associated protein in gastric cancer. Nat. Biomed. Eng. 5, 114–123 (2021)

    Article  Google Scholar 

  21. Kawamoto, K., Okino, S.T., Place, R.F., Urakami, S., Hirata, H., Kikuno, N., Kawakami, T., Tanaka, Y., Pookot, D., Chen, Z., Majid, S., Enokida, H., Nakagawa, M., Dahiya, R.: Epigenetic modifications of RASSF1A gene through chromatin remodeling in prostate cancer. Clin. Cancer Res. 27, 2665 (2021)

    Article  Google Scholar 

  22. Pankova, D., Jiang, Y., Chatzifrangkeskou, M., Vendrell, I., Buzzelli, J., Ryan, A., Brown, C., O’Neill, E.: RASSF1A controls tissue stiffness and cancer stem-like cells in lung adenocarcinoma. EMBO J. 38, e100532 (2019)

    Article  Google Scholar 

  23. Shan, K., Zhou, R.M., Xiang, J., Sun, Y.N., Liu, C., Lv, M.W., Xu, J.J.: FTO regulates ocular angiogenesis via m6A-YTHDF2-dependent mechanism. Exp. Eye. Res. 197, 108107 (2020)

    Article  Google Scholar 

  24. Qu, J., Zhu, L., Zhou, Z., Chen, P., Liu, S., Locy, M.L., Thannickal, V.J., Zhou, Y.: Reversing mechanoinductive DSP expression by CRISPR/dCas9-mediated epigenome editing. Am. J. Respir. Crit. Care Med. 198, 599–609 (2018)

    Article  Google Scholar 

  25. Cai, C., Gu, S., Yu, Y., Zhu, Y., Zhang, H., Yuan, B., Shen, L., Yang, B., Feng, X.H.: PRMT5 enables robust STAT3 activation via arginine symmetric dimethylation of SMAD7. Adv. Sci. (Weinh.) 8, 2003047 (2021)

  26. Kragesteen, B.K., Amit, I.: Heads or tails: histone tail clipping regulates macrophage activity. Nat. Immunol. 22, 678–680 (2021)

    Article  Google Scholar 

  27. Zhang, J., Liu, H., Pan, H., Yang, Y., Huang, G., Yang, Y., Zhou, W.P., Pan, Z.Y.: The histone acetyltransferase hMOF suppresses hepatocellular carcinoma growth. Biochem. Biophys. Res. Commun. 452, 575–580 (2014)

    Article  Google Scholar 

  28. Ke, M.Y., Xu, T., Fang, Y., Ye, Y.P., Li, Z.J., Ren, F.G., Lu, S.Y., Zhang, X.F., Wu, R.Q., Lv, Y., Dong, J.: Liver fibrosis promotes immune escape in hepatocellular carcinoma via GOLM1-mediated PD-L1 upregulation. Cancer Lett. 513, 14–25 (2021)

    Article  Google Scholar 

  29. Niland, S., Riscanevo, A.X., Eble, J.A.: Matrix metalloproteinases shape the tumor microenvironment in cancer progression. Int. J. Mol. Sci. 23, 146 (2021)

    Article  Google Scholar 

  30. Meng, C., He, Y., Wei, Z., Lu, Y., Du, F., Ou, G., Wang, N., Luo, X.G., Ma, W., Zhang, T.C., He, H.: MRTF-A mediates the activation of COL1A1 expression stimulated by multiple signaling pathways in human breast cancer cells. Biomed. Pharmacother. 104, 718–728 (2018)

    Article  Google Scholar 

  31. Stowers, R.S., Shcherbina, A., Israeli, J., Gruber, J.J., Chang, J., Nam, S., Rabiee, A., Teruel, M.N., Snyder, M.P., Kundaje, A., Chaudhuri, O.: Matrix stiffness induces a tumorigenic phenotype in mammary epithelium through changes in chromatin accessibility. Nat. Biomed. Eng. 3, 1009–1019 (2019)

    Article  Google Scholar 

  32. Ren, W., Fan, H., Grimm, S.A., Kim, J.J., Li, L., Guo, Y., Petell, C.J., Tan, X.F., Zhang, Z.M., Coan, J.P., Yin, J., Kim, D.I., Gao, L., Cai, L., Khudaverdyan, N., Çetin, B., Patel, D.J., Wang, Y., Cui, Q., Strahl, B.D., Gozani, O., Miller, K.M., O’Leary, S.E., Wade, P.A., Wang, G.G., Song, J.: DNMT1 reads heterochromatic H4K20me3 to reinforce LINE-1 DNA methylation. Nat. Commun. 12, 2490 (2021)

    Article  ADS  Google Scholar 

  33. Liu, J., Tan, Y., Zhang, H., Zhang, Y., Xu, P., Chen, J., Poh, Y.C., Tang, K., Wang, N., Huang, B.: Soft fibrin gels promote selection and growth of tumorigenic cells. Nat. Mater. 11, 734–741 (2012)

    Article  ADS  Google Scholar 

  34. Tan, Y., Tajik, A., Chen, J., Jia, Q., Chowdhury, F., Wang, L., Chen, J., Zhang, S., Hong, Y., Yi, H., Wu, D.C., Zhang, Y., Wei, F., Poh, Y.C., Seong, J., Singh, R., Lin, L.J., Doğanay, S., Li, Y., Jia, H., Ha, T., Wang, Y., Huang, B., Wang, N.: Matrix softness regulates plasticity of tumour-repopulating cells via H3K9 demethylation and Sox2 expression. Nat. Commun. 5, 4619 (2014)

    Article  ADS  Google Scholar 

  35. Zhu, F., Zykova, T.A., Peng, C., Zhang, J., Cho, Y.Y., Zheng, D., Yao, K., Ma, W.Y., Lau, A.T., Bode, A.M., Dong, Z.: Phosphorylation of H2AX at Ser139 and a new phosphorylation site Ser16 by RSK2 decreases H2AX ubiquitination and inhibits cell transformation. Cancer Res. 71, 393–403 (2011)

    Article  Google Scholar 

  36. Yu, Y., Zhang, Y., Chen, X., Chen, Y.: Plant noncoding RNAs: hidden players in development and stress responses. Annu. Rev. Cell Dev. Biol. 35, 407–431 (2019)

    Article  Google Scholar 

  37. Rupaimoole, R., Slack, F.J.: MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 16, 203–222 (2017)

    Article  Google Scholar 

  38. Kim, B.G., Gao, M.Q., Kang, S., Choi, Y.P., Lee, J.H., Kim, J.E., Han, H.H., Mun, S.G., Cho, N.H.: Mechanical compression induces VEGFA overexpression in breast cancer via DNMT3A-dependent miR-9 downregulation. Cell Death Dis. 8, e2646 (2017)

    Article  Google Scholar 

  39. Northey, J.J., Barrett, A.S., Acerbi, I., Hayward, M.K., Talamantes, S., Dean, I.S., Mouw, J.K., Ponik, S.M., Lakins, J.N., Huang, P.J., Wu, J., Shi, Q., Samson, S., Keely, P.J., Mukhtar, R.A., Liphardt, J.T., Shepherd, J.A., Hwang, E.S., Chen, Y.Y., Hansen, K.C., Littlepage, L.E., Weaver, V.M.: Stiff stroma increases breast cancer risk by inducing the oncogene ZNF217. J. Clin. Invest. 130, 5721–5737 (2020)

    Article  Google Scholar 

  40. Mouw, J.K., Yui, Y., Damiano, L., Bainer, R.O., Lakins, J.N., Acerbi, I., Ou, G., Wijekoon, A.C., Levental, K.R., Gilbert, P.M., Hwang, E.S., Chen, Y.Y., Weaver, V.M.: Tissue mechanics modulate microRNA-dependent PTEN expression to regulate malignant progression. Nat. Med. 20, 360–367 (2014)

    Article  Google Scholar 

  41. Daniel, J.M., Penzkofer, D., Teske, R., Dutzmann, J., Koch, A., Bielenberg, W., Bonauer, A., Boon, R.A., Fischer, A., Bauersachs, J., van Rooij, E., Dimmeler, S., Sedding, D.G.: Inhibition of miR-92a improves re-endothelialization and prevents neointima formation following vascular injury. Cardiovasc. Res. 103, 564–572 (2014)

    Article  Google Scholar 

  42. Lu, W., Zhang, H., Niu, Y., Wu, Y., Sun, W., Li, H., Kong, J., Ding, K., Shen, H.M., Wu, H., Xia, D., Wu, Y.: Long non-coding RNA linc00673 regulated non-small cell lung cancer proliferation, migration, invasion and epithelial mesenchymal transition by sponging miR-150-5p. Mol. Cancer 16, 118 (2017)

    Article  Google Scholar 

  43. Dai, W., Tian, C., Jin, S.: Effect of lncRNA ANRIL silencing on anoikis and cell cycle in human glioma via microRNA-203a. Onco. Targets Ther. 11, 5103–5109 (2018)

    Article  Google Scholar 

  44. Zhang, Q., Li, T., Wang, Z., Kuang, X., Shao, N., Lin, Y.: lncRNA NR2F1-AS1 promotes breast cancer angiogenesis through activating IGF-1/IGF-1R/ERK pathway. J. Cell Mol. Med. 24, 8236–8247 (2020)

    Article  Google Scholar 

  45. Li, X.L., Pongor, L., Tang, W., Das, S., Muys, B.R., Jones, M.F., Lazar, S.B., Dangelmaier, E.A., Hartford, C.C., Grammatikakis, I., Hao, Q., Sun, Q., Schetter, A., Martindale, J.L., Tang, B., Jenkins, L.M., Robles, A.I., Walker, R.L., Ambs, S., Chari, R., Shabalina, S.A., Gorospe, M., Hussain, S.P., Harris, C.C., Meltzer, P.S., Prasanth, K.V., Aladjem, M.I., Andresson, T., Lal, A.: A small protein encoded by a putative lncRNA regulates apoptosis and tumorigenicity in human colorectal cancer cells. Elife 9, e53734 (2020)

    Article  Google Scholar 

  46. Leisegang, M.S., Bibli, S.I., Günther, S., Pflüger-Müller, B., Oo, J.A., Höper, C., Seredinski, S., Yekelchyk, M., Schmitz-Rixen, T., Schürmann, C., Hu, J., Looso, M., Sigala, F., Boon, R.A., Fleming, I., Brandes, R.P.: Pleiotropic effects of laminar flow and statins depend on the Krüppel-like factor-induced lncRNA MANTIS. Eur. Heart J. 40, 2523–2533 (2019)

    Article  Google Scholar 

  47. Todorovski, V., Fox, A.H., Choi, Y.S.: Matrix stiffness-sensitive long noncoding RNA NEAT1 seeded paraspeckles in cancer cells. Mol. Biol. Cell 31, 1654–1662 (2020)

    Article  Google Scholar 

  48. Qu, X., Alsager, S., Zhuo, Y., Shan, B.: HOX transcript antisense RNA (HOTAIR) in cancer. Cancer Lett. 454, 90–97 (2019)

    Article  Google Scholar 

  49. Topel, H., Bagirsakci, E., Comez, D., Bagci, G., Cakan-Akdogan, G., Atabey, N.: lncRNA HOTAIR overexpression induced downregulation of c-Met signaling promotes hybrid epithelial/mesenchymal phenotype in hepatocellular carcinoma cells. Cell Commun. Signal 18, 110 (2020)

    Article  Google Scholar 

  50. Luo, H., Xu, C., Le, W., Ge, B., Wang, T.: lncRNA CASC11 promotes cancer cell proliferation in bladder cancer through miRNA-150. J. Cell Biochem. 120, 13487–13493 (2019)

    Article  Google Scholar 

  51. Shi, X., You, X., Zeng, W.C., Deng, Y.J., Hong, H.L., Huang, O.X., Wang, M.F.: LncRNA PAPAS aggravates the progression of gastric cancer through regulating miRNA-188-5p. Eur. Rev. Med. Pharmacol. Sci. 23, 10761–10768 (2019)

    Google Scholar 

  52. Wu, D., Qin, B.Y., Qi, X.G., Hong, L.L., Zhong, H.B., Huang, J.Y.: LncRNA AWPPH accelerates the progression of non-small cell lung cancer by sponging miRNA-204 to upregulate CDK6. Eur. Rev. Med. Pharmacol. Sci. 24, 4281–4287 (2020)

    Google Scholar 

  53. Olivero, C.E., Martínez-Terroba, E., Zimmer, J., Liao, C., Tesfaye, E., Hooshdaran, N., Schofield, J.A., Bendor, J., Fang, D., Simon, M.D., Zamudio, J.R., Dimitrova, N.: p53 activates the long noncoding RNA Pvt1b to inhibit Myc and suppress tumorigenesis. Mol. Cell 77, 761-774.e8 (2020)

    Article  Google Scholar 

  54. Leal, A., Sidransky, D., Brait, M.: Tissue and cell-free DNA-based epigenomic approaches for cancer detection. Clin. Chem. 66, 105–116 (2020)

    Article  Google Scholar 

  55. Saini, H., Rahmani Eliato, K., Veldhuizen, J., Zare, A., Allam, M., Silva, C., Kratz, A., Truong, D., Mouneimne, G., LaBaer, J., Ros, R., Nikkhah, M.: The role of tumor-stroma interactions on desmoplasia and tumorigenicity within a microengineered 3D platform. Biomaterials 247, 119975 (2020)

    Article  Google Scholar 

  56. Plodinec, M., Loparic, M., Monnier, C.A., Obermann, E.C., Zanetti-Dallenbach, R., Oertle, P., Hyotyla, J.T., Aebi, U., Bentires-Alj, M., Lim, R.Y., Schoenenberger, C.A.: The nanomechanical signature of breast cancer. Nat. Nanotechnol. 7, 757–765 (2012)

    Article  ADS  Google Scholar 

  57. Hansem, L.M.K., Huang, R., Wegner, C.S., Simonsen, T.G., Gaustad, J.V., Hauge, A., Rofstad, E.K.: Intratumor heterogeneity in interstitial fluid pressure in cervical and pancreatic carcinoma xenografts. Transl. Oncol. 12, 1079–1085 (2019)

    Article  Google Scholar 

  58. Tomasini, M.D., Rinaldi, C., Tomassone, M.S.: Molecular dynamics simulations of rupture in lipid bilayers. Exp. Biol. Med. (Maywood) 235, 181–188 (2010)

    Article  Google Scholar 

  59. Lemma, E.D., Spagnolo, B., Rizzi, F., Corvaglia, S., Pisanello, M., De Vittorio, M., Pisanello, F.: Microenvironmental stiffness of 3D polymeric structures to study invasive rates of cancer cells. Adv. Health. Mater. 6, 1700888 (2017)

    Article  Google Scholar 

  60. Zhang, L., Sullivan, P.S., Goodman, J.C., Gunaratne, P.H., Marchetti, D.: MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase. Cancer Res. 71, 645–654 (2011)

    Article  Google Scholar 

  61. Bordeleau, F., Mason, B.N., Lollis, E.M., Mazzola, M., Zanotelli, M.R., Somasegar, S., Califano, J.P., Montague, C., LaValley, D.J., Huynh, J., Mencia-Trinchant, N., Negrón Abril, Y.L., Hassane, D.C., Bonassar, L.J., Butcher, J.T., Weiss, R.S., Reinhart-King, C.A.: Matrix stiffening promotes a tumor vasculature phenotype. Proc. Natl. Acad. Sci. USA 114, 492–497 (2017)

    Article  ADS  Google Scholar 

  62. Dong, Y., Xie, X., Wang, Z., Hu, C., Zheng, Q., Wang, Y., Chen, R., Xue, T., Chen, J., Gao, D., Wu, W., Ren, Z., Cui, J.: Increasing matrix stiffness upregulates vascular endothelial growth factor expression in hepatocellular carcinoma cells mediated by integrin β1. Biochem. Biophys. Res. Commun. 444, 427–432 (2014)

    Article  Google Scholar 

  63. Barr, M.P., O’Byrne, K.J., Al-Sarraf, N., Gray, S.G.: VEGF-mediated cell survival in non-small-cell lung cancer: implications for epigenetic targeting of VEGF receptors as a therapeutic approach. Epigenomics 7, 897–910 (2015)

    Article  Google Scholar 

  64. Kim, J., Hwang, J., Jeong, H., Song, H.J., Shin, J., Hur, G., Park, Y.W., Lee, S.H., Kim, J.: Promoter methylation status of VEGF receptor genes: a possible epigenetic biomarker to anticipate the efficacy of intracellular-acting VEGF-targeted drugs in cancer cells. Epigenetics 7, 191–200 (2012)

    Article  Google Scholar 

  65. Lai Benjamin, F.L., Lu Rick, X., Hu, Y., Davenport, H.L., Dou, W., Wang, E.Y., Radulovich, N., Tsao, M.S., Sun, Y., Radisic, M.: Recapitulating pancreatic tumor microenvironment through synergistic use of patient organoids and organ-on-a-chip vasculature. Adv. Funct. Mater. 30, 2000545 (2020)

    Article  Google Scholar 

  66. Ng, S., Tan, W.J., Pek, M.M.X., Tan, M.H., Kurisawa, M.: Mechanically and chemically defined hydrogel matrices for patient-derived colorectal tumor organoid culture. Biomaterials 219, 119400 (2019)

    Article  Google Scholar 

  67. Jiang, T., Zhao, J., Yu, S., Mao, Z., Gao, C., Zhu, Y., Mao, C., Zheng, L.: Untangling the response of bone tumor cells and bone forming cells to matrix stiffness and adhesion ligand density by means of hydrogels. Biomaterials 188, 130–143 (2019)

    Article  Google Scholar 

  68. Casey, J., Yue, X., Nguyen, T.D., Acun, A., Zellmer, V.R., Zhang, S., Zorlutuna, P.: 3D hydrogel-based microwell arrays as a tumor microenvironment model to study breast cancer growth. Biomed. Mater. 12, 025009 (2017)

    Article  ADS  Google Scholar 

  69. Akkari, L., Haouzi, D., Binamé, F., Floc’h, N., Lassus, P., Baghdiguian, S., Hibner, U.: Cell shape and TGF-beta signaling define the choice of lineage during in vitro differentiation of mouse primary hepatic precursors. J. Cell Physiol. 225, 186–195 (2010)

    Article  Google Scholar 

  70. Tang, X., Xu, P., Wang, B., Luo, J., Fu, R., Huang, K., Dai, L., Lu, J., Cao, G., Peng, H., Zhang, L., Zhang, Z., Chen, Q.: Identification of a specific gene module for predicting prognosis in glioblastoma patients. Front. Oncol. 9, 812 (2019)

    Article  Google Scholar 

  71. Subramanian, A., Kanzaki, L.F., Galloway, J.L., Schilling, T.F.: Mechanical force regulates tendon extracellular matrix organization and tenocyte morphogenesis through TGFbeta signaling. Elife 7, e38069 (2018)

    Article  Google Scholar 

  72. Mondal, B., Patil, V., Shwetha, S.D., Sravani, K., Hegde, A.S., Arivazhagan, A., Santosh, V., Kanduri, M., Somasundaram, K.: Integrative functional genomic analysis identifies epigenetically regulated fibromodulin as an essential gene for glioma cell migration. Oncogene 36, 71–83 (2017)

    Article  Google Scholar 

  73. Medina-Echeverz, J., Hinterberger, M., Testori, M., Geiger, M., Giessel, R., Bathke, B., Kassub, R., Gräbnitz, F., Fiore, G., Wennier, S.T., Chaplin, P., Suter, M., Hochrein, H., Lauterbach, H.: Synergistic cancer immunotherapy combines MVA-CD40L induced innate and adaptive immunity with tumor targeting antibodies. Nat. Commun. 10, 5041 (2019)

    Article  ADS  Google Scholar 

  74. Nia, H.T., Liu, H., Seano, G., Datta, M., Jones, D., Rahbari, N., Incio, J., Chauhan, V.P., Jung, K., Martin, J.D., Askoxylakis, V., Padera, T.P., Fukumura, D., Boucher, Y., Hornicek, F.J., Grodzinsky, A.J., Baish, J.W., Munn, L.L., Jain, R.K.: Solid stress and elastic energy as measures of tumour mechanopathology. Nat. Biomed. Eng. 1, 0004 (2016)

    Article  Google Scholar 

  75. Dou, C., Liu, Z., Tu, K., Zhang, H., Chen, C., Yaqoob, U., Wang, Y., Wen, J., van Deursen, J., Sicard, D., Tschumperlin, D., Zou, H., Huang, W.C., Urrutia, R., Shah, V.H., Kang, N.: P300 acetyltransferase mediates stiffness-induced activation of hepatic stellate cells into tumor-promoting myofibroblasts. Gastroenterology 154, 2209-2221.e14 (2018)

    Article  Google Scholar 

  76. Bayer, S.V., Grither, W.R., Brenot, A., Hwang, P.Y., Barcus, C.E., Ernst, M., Pence, P., Walter, C., Pathak, A., Longmore, G.D.: DDR2 controls breast tumor stiffness and metastasis by regulating integrin mediated mechanotransduction in CAFs. Elife 8, e45508 (2019)

    Article  Google Scholar 

  77. Yoshida, G.J.: Regulation of heterogeneous cancer-associated fibroblasts: the molecular pathology of activated signaling pathways. J. Exp. Clin. Cancer Res. 39, 112 (2020)

    Article  Google Scholar 

  78. Wang, C., Yang, J.: Mechanical forces: the missing link between idiopathic pulmonary fibrosis and lung cancer. Eur. J. Cell Biol. 101, 151234 (2022)

    Article  Google Scholar 

  79. Grossen, A., Smith, K., Coulibaly, N., Arbuckle, B., Evans, A., Wilhelm, S., Jones, K., Dunn, I., Towner, R., Wu, D., Kim, Y.T., Battiste, J.: Physical forces in glioblastoma migration: a systematic review. Int. J. Mol. Sci. 23, 4055 (2022)

    Article  Google Scholar 

  80. Veerasubramanian, P.K., Trinh, A., Akhtar, N., Liu, W.F., Downing, T.L.: Biophysical and epigenetic regulation of cancer stemness, invasiveness and immune action. Curr. Tissue Microenviron. Rep. 1, 277–300 (2020)

    Article  Google Scholar 

  81. Cha, S.T., Tan, C.T., Chang, C.C., Chu, C.Y., Lee, W.J., Lin, B.Z., Lin, M.T., Kuo, M.L.: G9a/RelB regulates self-renewal and function of colon-cancer-initiating cells by silencing Let-7b and activating the K-RAS/β-catenin pathway. Nat. Cell Biol. 18, 993–1005 (2016)

    Article  Google Scholar 

  82. Jia, Q., Zhou, W., Yao, W., Yang, F., Zhang, S., Singh, R., Chen, J., Chen, J.J., Zhang, Y., Wei, F., Zhang, Y., Jia, H., Wang, N.: Downregulation of YAP-dependent Nupr1 promotes tumor-repopulating cell growth in soft matrices. Oncogenesis 5, e220 (2016)

    Article  Google Scholar 

  83. Liu, Y., Lv, J., Liang, X., Yin, X., Zhang, L., Chen, D., Jin, X., Fiskesund, R., Tang, K., Ma, J., Zhang, H., Dong, W., Mo, S., Zhang, T., Cheng, F., Zhou, Y., Xie, J., Wang, N., Huang, B.: Fibrin stiffness mediates dormancy of tumor-repopulating cells via a Cdc42-driven Tet2 epigenetic program. Cancer Res. 78, 3926–3937 (2018)

    Article  Google Scholar 

  84. Bertero, T., Oldham, W.M., Grasset, E.M., Bourget, I., Boulter, E., Pisano, S., Hofman, P., Bellvert, F., Meneguzzi, G., Bulavin, D.V., Estrach, S., Feral, C.C., Chan, S.Y., Bozec, A., Gaggioli, C.: Tumor-stroma mechanics coordinate amino acid availability to sustain tumor growth and malignancy. Cell Metab. 29, 124-140.e10 (2019)

    Article  Google Scholar 

  85. Kaukonen, R., Mai, A., Georgiadou, M., Saari, M., De Franceschi, N., Betz, T., Sihto, H., Ventelä, S., Elo, L., Jokitalo, E., Westermarck, J., Kellokumpu-Lehtinen, P.L., Joensuu, H., Grenman, R., Ivaska, J.: Normal stroma suppresses cancer cell proliferation via mechanosensitive regulation of JMJD1a-mediated transcription. Nat. Commun. 7, 12237 (2016)

    Article  ADS  Google Scholar 

  86. Sroka, J., von Gunten, M., Dunn, G.A., Keller, H.U.: Phenotype modulation in non-adherent and adherent sublines of Walker carcinosarcoma cells: the role of cell-substratum contacts and microtubules in controlling cell shape, locomotion and cytoskeletal structure. Int. J. Biochem. Cell Biol. 34, 882–899 (2002)

    Article  Google Scholar 

  87. Surcel, A., Schiffhauer, E.S., Thomas, D.G., Zhu, Q., DiNapoli, K.T., Herbig, M., Otto, O., West-Foyle, H., Jacobi, A., Kräter, M., Plak, K., Guck, J., Jaffee, E.M., Iglesias, P.A., Anders, R.A., Robinson, D.N.: Targeting mechanoresponsive proteins in pancreatic cancer: 4-hydroxyacetophenone blocks dissemination and invasion by activating MYH14. Cancer Res. 79, 4665–4678 (2019)

    Article  Google Scholar 

  88. Zhao, B., Lv, Y.: Suspension state and shear stress enhance breast tumor cells EMT through YAP by microRNA-29b. Cell Biol. Toxicol. (2021). https://doi.org/10.1007/s10565-021-09661-6

    Article  Google Scholar 

  89. Zhang, Y., Chen, Y., Xu, Z., Wu, Y., Zhang, Y., Shi, L.: Chronic exercise mediates epigenetic suppression of L-type Ca2+ channel and BKCa channel in mesenteric arteries of hypertensive rats. J. Hypertens. 38, 1763–1776 (2020)

    Article  Google Scholar 

  90. Walewska, A., Kulawiak, B., Szewczyk, A., Koprowski, P.: Mechanosensitivity of mitochondrial large-conductance calcium-activated potassium channels. Biochim. Biophys. Acta Bioenerg. 1859, 797–805 (2018)

    Article  Google Scholar 

  91. Hao, Z., Wu, T., Cui, X., Zhu, P., Tan, C., Dou, X., Hsu, K.W., Lin, Y.T., Peng, P.H., Zhang, L.S., Gao, Y., Hu, L., Sun, H.L., Zhu, A., Liu, J., Wu, K.J., He, C.: N6-deoxyadenosine methylation in mammalian mitochondrial DNA. Mol. Cell 78, 382-395.e8 (2020)

    Article  Google Scholar 

  92. Noh, J.H., Kim, K.M., Abdelmohsen, K., Yoon, J.H., Panda, A.C., Munk, R., Kim, J., Curtis, J., Moad, C.A., Wohler, C.M., Indig, F.E., de Paula, W., Dudekula, D.B., De, S., Piao, Y., Yang, X., Martindale, J.L., de Cabo, R., Gorospe, M.: HuR and GRSF1 modulate the nuclear export and mitochondrial localization of the lncRNA RMRP. Genes Dev. 30, 1224–1239 (2016)

    Article  Google Scholar 

  93. Tian, C., Öhlund, D., Rickelt, S., Lidström, T., Huang, Y., Hao, L., Zhao, R.T., Franklin, O., Bhatia, S.N., Tuveson, D.A., Hynes, R.O.: Cancer cell-derived matrisome proteins promote metastasis in pancreatic ductal adenocarcinoma. Cancer Res. 80, 1461–1474 (2020)

    Article  Google Scholar 

  94. Rose, M., Kloten, V., Noetzel, E., Gola, L., Ehling, J., Heide, T., Meurer, S.K., Gaiko-Shcherbak, A., Sechi, A.S., Huth, S., Weiskirchen, R., Klaas, O., Antonopoulos, W., Lin, Q., Wagner, W., Veeck, J., Gremse, F., Steitz, J., Knüchel, R., Dahl, E.: ITIH5 mediates epigenetic reprogramming of breast cancer cells. Mol. Cancer 16, 44 (2017)

    Article  Google Scholar 

  95. Nia, H.T., Datta, M., Seano, G., Zhang, S., Ho, W.W., Roberge, S., Huang, P., Munn, L.L., Jain, R.K.: In vivo compression and imaging in mouse brain to measure the effects of solid stress. Nat. Protoc. 15, 2321–2340 (2020)

    Article  Google Scholar 

  96. Calhoun, M.A., Cui, Y., Elliott, E.E., Mo, X., Otero, J.J., Winter, J.O.: MicroRNA-mRNA interactions at low levels of compressive solid stress implicate mir-548 in increased glioblastoma cell motility. Sci. Rep. 10, 311 (2020)

    Article  ADS  Google Scholar 

  97. Han, X., Jiang, H., Qi, J., Li, J., Yang, J., Tian, Y., Li, W., Jing, Q., Wang, C.: Novel lncRNA UPLA1 mediates tumorigenesis and prognosis in lung adenocarcinoma. Cell Death Dis. 11, 999 (2020)

    Article  Google Scholar 

  98. Yang, L., Chen, Y., Cui, T., Knösel, T., Zhang, Q., Albring, K.F., Huber, O., Petersen, I.: Desmoplakin acts as a tumor suppressor by inhibition of the Wnt/β-catenin signaling pathway in human lung cancer. Carcinogenesis 33, 1863–1870 (2012)

    Article  Google Scholar 

  99. Cui, X., Ma, C., Vasudevaraja, V., Serrano, J., Tong, J., Peng, Y., Delorenzo, M., Shen, G., Frenster, J., Morales, R.T., Qian, W., Tsirigos, A., Chi, A.S., Jain, R., Kurz, S.C., Sulman, E.P., Placantonakis, D.G., Snuderl, M., Chen, W.: Dissecting the immunosuppressive tumor microenvironments in glioblastoma-on-a-chip for optimized PD-1 immunotherapy. eLife 9, e52253 (2020)

    Article  Google Scholar 

  100. Nava, M.M., Miroshnikova, Y.A., Biggs, L.C., Whitefield, D.B., Metge, F., Boucas, J., Vihinen, H., Jokitalo, E., Li, X., García Arcos, J.M., Hoffmann, B., Merkel, R., Niessen, C.M., Dahl, K.N., Wickström, S.A.: Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage. Cell 181, 800-817.e22 (2020)

    Article  Google Scholar 

  101. Wan, Q., Cho, E., Yokota, H., Na, S.: Rac1 and Cdc42 GTPases regulate shear stress-driven β-catenin signaling in osteoblasts. Biochem. Biophys. Res. Commun. 433, 502–507 (2013)

    Article  Google Scholar 

  102. Rabineau, M., Flick, F., Ehlinger, C., Mathieu, E., Duluc, I., Jung, M., Senger, B., Kocgozlu, L., Schaaf, P., Lavalle, P., Freund, J.N., Haikel, Y., Vautier, D.: Chromatin de-condensation by switching substrate elasticity. Sci. Rep. 8, 12655 (2018)

    Article  ADS  Google Scholar 

  103. Yang, G., Feng, J., Liu, Y., Zhao, M., Yuan, Y., Yuan, H., Yun, H., Sun, M., Bu, Y., Liu, L., Liu, Z., Niu, J.Q., Yin, M., Song, X., Miao, Z., Lin, Z., Zhang, X.: HAT1 signaling confers to assembly and epigenetic regulation of HBV cccDNA minichromosome. Theranostics 9, 7345–7358 (2019)

    Article  Google Scholar 

  104. Graham, D.M., Burridge, K.: Mechanotransduction and nuclear function. Curr. Opin. Cell Biol. 40, 98–105 (2016)

    Article  Google Scholar 

  105. Rolando, M., Stefani, C., Doye, A., Acosta, M.I., Visvikis, O., Yevick, H.G., Buchrieser, C., Mettouchi, A., Bassereau, P., Lemichez, E.: Contractile actin cables induced by Bacillus anthracis lethal toxin depend on the histone acetylation machinery. Cytoskeleton (Hoboken) 72, 542–556 (2015)

    Article  Google Scholar 

  106. Tian, W., Fan, Z., Li, J., Hao, C., Li, M., Xu, H., Wu, X., Zhou, B., Zhang, L., Fang, M., Xu, Y.: Myocardin-related transcription factor A (MRTF-A) plays an essential role in hepatic stellate cell activation by epigenetically modulating TGF-β signaling. Int. J. Biochem. Cell Biol. 71, 35–43 (2016)

    Article  Google Scholar 

  107. Pajerowski, J.D., Dahl, K.N., Zhong, F.L., Sammak, P.J., Discher, D.E.: Physical plasticity of the nucleus in stem cell differentiation. Proc. Natl. Acad. Sci. U. S. A. 104, 15619–15624 (2007)

    Article  ADS  Google Scholar 

  108. Furusawa, T., Rochman, M., Taher, L., Dimitriadis, E.K., Nagashima, K., Anderson, S., Bustin, M.: Chromatin decompaction by the nucleosomal binding protein HMGN5 impairs nuclear sturdiness. Nat. Commun. 6, 6138 (2015)

    Article  ADS  Google Scholar 

  109. Shimamoto, Y., Tamura, S., Masumoto, H., Maeshima, K.: Nucleosome-nucleosome interactions via histone tails and linker DNA regulate nuclear rigidity. Mol. Biol. Cell 28, 1580–1589 (2017)

    Article  Google Scholar 

  110. Krause, M., Yang, F.W., Te Lindert, M., Isermann, P., Schepens, J., Maas, R.J.A., Venkataraman, C., Lammerding, J., Madzvamuse, A., Hendriks, W., Te Riet, J., Wolf, K.: Cell migration through three-dimensional confining pores: speed accelerations by deformation and recoil of the nucleus. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180225 (2019)

  111. Maresca, G., Natoli, M., Nardella, M., Arisi, I., Trisciuoglio, D., Desideri, M., Brandi, R., D’Aguanno, S., Nicotra, M.R., D’Onofrio, M., Urbani, A., Natali, P.G., Del Bufalo, D., Felsani, A., D’Agnano, I.: LMNA knock-down affects differentiation and progression of human neuroblastoma cells. PLoS One 7, e45513 (2012)

    Article  ADS  Google Scholar 

  112. Rauschert, I., Aldunate, F., Preussner, J., Arocena-Sutz, M., Peraza, V., Looso, M., Benech, J.C., Agrelo, R.: Promoter hypermethylation as a mechanism for Lamin A/C silencing in a subset of neuroblastoma cells. PLoS One 12, e0175953 (2017)

    Article  Google Scholar 

  113. Niu, N., Mercado-Uribe, I., Liu, J.: Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer cells. Oncogene 36, 4887–4900 (2017)

    Article  Google Scholar 

  114. Xuan, B., Ghosh, D., Dawson, M.R.: Contributions of the distinct biophysical phenotype of polyploidal giant cancer cells to cancer progression. Semin. Cancer Biol. 81,64–72 (2022)

  115. Xuan, B., Ghosh, D., Cheney, E.M., Clifton, E.M., Dawson, M.R.: Dysregulation in actin cytoskeletal organization drives increased stiffness and migratory persistence in polyploidal giant cancer cells. Sci. Rep. 8, 11935 (2018)

    Article  ADS  Google Scholar 

  116. Crabb, S., Danson, S.J., Catto, J.W.F., McDowell, C., Lowder, J.N., Caddy, J., Dunkley, D., Rajaram, J., Ellis, D., Hill, S., Hathorn, D., Whitehead, A., Kalevras, M., Huddart, R., Griffiths, G.: SPIRE - combining SGI-110 with cisplatin and gemcitabine chemotherapy for solid malignancies including bladder cancer: study protocol for a phase Ib/randomised IIa open label clinical trial. Trials 19, 216 (2018)

    Article  Google Scholar 

  117. Li, X., Jiang, Y., Peterson, Y.K., Xu, T., Himes, R.A., Luo, X., Yin, G., Inks, E.S., Dolloff, N., Halene, S., Chan, S.S.L., Chou, C.J.: Design of hydrazide-bearing HDACIs based on panobinostat and their p53 and FLT3-ITD dependency in antileukemia activity. J. Med. Chem. 63, 5501–5525 (2020)

    Article  Google Scholar 

  118. Fang, Y., Liao, G., Yu, B.: LSD1/KDM1A inhibitors in clinical trials: advances and prospects. J. Hematol. Oncol. 12, 129 (2019)

    Article  Google Scholar 

  119. Pearson, S., Guo, B., Pierce, A., Azadbakht, N., Brazzatti, J.A., Patassini, S., Mulero-Navarro, S., Meyer, S., Flotho, C., Gelb, B.D., Whetton, A.D.: Proteomic analysis of an induced pluripotent stem cell model reveals strategies to treat juvenile myelomonocytic leukemia. J. Proteome. Res. 19, 194–203 (2020)

    Article  Google Scholar 

  120. Adams, D., Polydefkis, M., González-Duarte, A., Wixner, J., Kristen, A.V., Schmidt, H.H., Berk, J.L., Losada López, I.A., Dispenzieri, A., Quan, D., Conceição, I.M., Slama, M.S., Gillmore, J.D., Kyriakides, T., Ajroud-Driss, S., Waddington-Cruz, M., Mezei, M.M., Planté-Bordeneuve, V., Attarian, S., Mauricio, E., Brannagan, T.H. 3rd, Ueda, M., Aldinc, E., Wang, J.J., White, M.T., Vest, J., Berber, E., Sweetser, M.T., Coelho, T., patisiran Global OLE study group.: Long-term safety and efficacy of patisiran for hereditary transthyretin-mediated amyloidosis with polyneuropathy: 12-month results of an open-label extension study. Lancet Neurol. 20, 49–59 (2021)

  121. Ahuja, N., Sharma, A.R., Baylin, S.B.: Epigenetic therapeutics: a new weapon in the war against cancer. Annu. Rev. Med. 67, 73–89 (2016)

    Article  Google Scholar 

  122. Morel, D., Jeffery, D., Aspeslagh, S., Almouzni, G., Postel-Vinay, S.: Combining epigenetic drugs with other therapies for solid tumours - past lessons and future promise. Nat. Rev. Clin. Oncol. 17, 91–107 (2020)

    Article  Google Scholar 

  123. Ferrari, A.C., Alumkal, J.J., Stein, M.N., Taplin, M.E., Babb, J., Barnett, E.S., Gomez-Pinillos, A., Liu, X., Moore, D., DiPaola, R., Beer, T.M.: Epigenetic therapy with panobinostat combined with bicalutamide rechallenge in castration-resistant prostate cancer. Clin. Cancer Res. 25, 52–63 (2019)

    Article  Google Scholar 

  124. Gomez, S., Tabernacki, T., Kobyra, J., Roberts, P., Chiappinelli, K.B.: Combining epigenetic and immune therapy to overcome cancer resistance. Semin. Cancer Biol. 65, 99–113 (2020)

    Article  Google Scholar 

  125. Llopiz, D., Ruiz, M., Villanueva, L., Iglesias, T., Silva, L., Egea, J., Lasarte, J.J., Pivette, P., Trochon-Joseph, V., Vasseur, B., Dixon, G., Sangro, B., Sarobe, P.: Enhanced anti-tumor efficacy of checkpoint inhibitors in combination with the histone deacetylase inhibitor Belinostat in a murine hepatocellular carcinoma model. Cancer Immunol. Immunother. 68, 379–393 (2019)

    Article  Google Scholar 

  126. Jain, V., Kumar, H., Anod, H.V., Chand, P., Gupta, N.V., Dey, S., Kesharwani, S.S.: A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J. Control. Release 326, 628–647 (2020)

    Article  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grant reference number: 11872134), Natural Science Foundation of Hubei, China (Grant reference number: 2022CFA023), and Natural Science Foundation of Chongqing, China (Grant reference number: cstc2020jcyj-msxmX0035).

Author information

Authors and Affiliations

Authors

Contributions

Both authors had the idea for the article, performed the literature search and data analysis and drafted and critically revised the work.

Corresponding author

Correspondence to Yonggang Lv.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Both authors agree to publish this work.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Lv, Y. A biomechanical view of epigenetic tumor regulation. J Biol Phys 49, 283–307 (2023). https://doi.org/10.1007/s10867-023-09633-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-023-09633-3

Keywords

Navigation