Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) March 30, 2023

Synthesis and crystal structure of two novel polymorphs of (NaCl)[Cu(HSeO3)2]: a further contribution to the family of layered copper hydrogen selenites

  • Vasili Yu Grishaev , Oleg I. Siidra EMAIL logo , Mishel R. Markovski , Dmitri O. Charkin , Timofey A. Omelchenko and Evgeni V. Nazarchuk

Abstract

Crystals of two new polymorphic forms of the known compound (NaCl)[Cu(HSeO3)2], which we term polymorphs II and III, were formed after a ca. one-year dwelling of a crystalline precipitate under mother liquor and upon crystallization in the presence of K+, respectively. Both structures belong to the “layered copper hydroselenite” family. The polymorph II is a structural analog of (KCl)[Cu(HSeO3)2] with a fully ordered Na+ site; the main difference concerns the environment of Cu2+ which is more regular in (NaCl)[Cu(HSeO3)2]-II. In contrast to some expectations, crystallization from solutions containing KCl. NaCl, CuCl2, and H2SeO3 upon evaporation does not result in formation of mixed (Na1−xK x Cl)[Cu(HSeO3)2] crystals, but rather in a separate crystallization of (KCl)[Cu(HSeO3)2] and (NaCl)[Cu(HSeO3)2]-III which exhibits a complex structure with four ordered and one disordered Na+ sites. It is possible that longer crystallization times enhance formation of ordered structures.


Corresponding author: Oleg I. Siidra, Department of Crystallography, St. Petersburg State University, University Emb. 7/9, St. Petersburg 199034, Russia; and Kola Science Center, Russian Academy of Sciences, Fersmana str. 14, Apatity, Murmansk Region 184209, Russia, E-mail:
Mishel R. Markovski, Current address: Normandie Université, CNRS, Laboratoire Catalyse et Spectrochimie, 14000 Caen, France.

Acknowledgements

We are grateful to Uwe Kolitsch and one anonymous reviewer for valuable comments. Technical support by the X-Ray Diffraction and Microscopy and Microanalysis Resource Centers of Saint-Petersburg State University is gratefully acknowledged.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Asai, T., Kiriyama, R. Optical and magnetic studies of CuSeO3(H2O)2 based on the refined crystal structure. Bull. Chem. Soc. Jpn. 1973, 46, 2395; https://doi.org/10.1246/bcsj.46.2395.Search in Google Scholar

2. Berdonosov, P. S., Janson, O., Olenev, A. V., Krivovichev, S. V., Rosner, H., Dolgikh, V. A., Tsirlin, A. A. Crystal structures and variable magnetism of PbCu2(XO3)2Cl2 with X = Se, Te. Dalton Trans. 2013, 42, 9547–9554; https://doi.org/10.1039/c3dt50426c.Search in Google Scholar PubMed

3. Tellgren, R., Liminga, R. Hydrogen bond studies. LXXXVII. A neutron diffraction study of ammonium trihydrogen selenite. Acta Crystallogr. 1974, B30, 2497–2499; https://doi.org/10.1107/s0567740874007424.Search in Google Scholar

4. Vinorgadova, I. S. 2D and 133Cs NMR study of the hydrogen bond network and antiferroelectric. J. Solid State Chem. 1981, 40, 361–368.10.1016/0022-4596(81)90403-5Search in Google Scholar

5. Shuvalov, L. A., Bondarenko, V. V., Varikash, V. M., Gridnev, S. A., Makarova, I. P., Simonov, V. I. Thallium-tri-hydrogen selenite, TlH3(SeO3)2 – a new member of alkaline tri-hydrogen selenite crystal family. Ferroelectrics Lett. 1984, 2, 143–146; https://doi.org/10.1080/07315178408202435.Search in Google Scholar

6. Sheldrick, W. S., Häusler, H.-J. Das Hydrogendiarsenit-Anion HAs2O53−. Darstellung und Struktur von K3HAs2O5⋅6H2O. Z. Naturforsch. 1985, 40b, 1622–1625.10.1515/znb-1985-1205Search in Google Scholar

7. Sheldrick, W. S., Häusler, H.-J. Zur Kenntnis von Natriumarseniten im Dreistoffsystem Na2O – As2O3 – H2O bei 6°C. Z. Anorg. Allg. Chem. 1987, 549, 177–186; https://doi.org/10.1002/zaac.19875490618.Search in Google Scholar

8. Effenberger, H., Miletich, R., Pertlik, F. Structure of dilead(II) hydrogenarsenate(III) dichloride. Acta Crystallogr. 1990, C46, 541–543; https://doi.org/10.1107/s0108270189008863.Search in Google Scholar

9. Markovski, M. R., Siidra, O. I., Charkin, D. O., Nazarchuk, E. V., Grishaev, V. Yu. Molecular inorganic polymers: synthesis and crystal structures of KCl·2H2SeO3 and CsCl·H2SeO3. Z. Kristallogr. 2020, 235, 553–557; https://doi.org/10.1515/zkri-2020-0062.Search in Google Scholar

10. Baran, J., Lis, T., Marchewka, M., Ratajczak, H. Structure and polarized IR and Raman spectra of Na2SeO4·H2SeO3·H2O crystal. J. Mol. Struct. 1991, 250, 13–45; https://doi.org/10.1016/0022-2860(91)80119-o.Search in Google Scholar

11. Feng, M.-L., Prosvirin, A. V., Mao, J.-G., Dunbar, K. R. Syntheses, structural studies, and magnetic properties of divalent Cu and Co selenites with organic constituents. Chem. Eur. J. 2006, 8312–8323; https://doi.org/10.1002/chem.200600031.Search in Google Scholar PubMed

12. Markovski, M. R., Charkin, D. O., Siidra, O. I., Nekrasova, D. O. Copper hydroselenite nitrates (A+NO3)n[Cu(HSeO3)2] (A = Rb+, Cs+ and Tl+, n = 1, 2) related to Ruddlesden – Popper phases. Z. Kristallogr. 2019, 234, 749–756; https://doi.org/10.1515/zkri-2019-0036.Search in Google Scholar

13. Charkin, D. O., Markovski, M. R., Siidra, O. I., Nekrasova, D. O., Grishaev, V. Yu. Influence of the alkali cation size on the Cu2+ coordination environments in (AX)[Cu(HSeO3)2] (A = Na, K, NH4, Rb, Cs; X = Cl, Br) layered copper hydrogen selenite halides. Z. Kristallogr. 2019, 234, 739–747; https://doi.org/10.1515/zkri-2019-0042.Search in Google Scholar

14. Spirovski, F., Wagener, M., Stefov, V., Engelen, B. Crystal structures of rubidium zinc bis (hydrogenselenate (IV)) chloride RbZn(HSeO3)2Cl, and rubidium zinc bis (hydrogenselenate (IV)) bromide RbZn(HSeO3)2Br. Z. Kristallogr. NCS 2007, 222, 91; https://doi.org/10.1524/ncrs.2007.0037.Search in Google Scholar

15. Trombe, J. C., Lafront, A. M., Bonvoisin, J. Synthesis, structure and magnetic measurement of a new layered copper hydrogenselenite: (Cu(HSeO3)2)·((NH4)Cl). Inorg. Chim. Acta 1997, 262, 47; https://doi.org/10.1016/s0020-1693(97)05501-1.Search in Google Scholar

16. Markovski, M. R., Siidra, O. I., Charkin, D. O., Grishaev, V. Y. Layered calcium hydrogen selenite chlorides Ca(HSeO3)Cl and Ca(HSeO3)Cl(H2O), the first halides obtained in СaCl2–H2SeO3–H2O system. Z. Kristallogr. 2020, 235, 439–443; https://doi.org/10.1515/zkri-2020-0054.Search in Google Scholar

17. Kovrugin, V. M., Krivovichev, S. V., Mentré, O., Colmont, M. [NaCl][Cu(HSeO3)2], NaCl-intercalated Cu(HSeO3)2: synthesis, crystal structure and comparison with related compounds. Z. Kristallogr. 2015, 230, 573–577; https://doi.org/10.1515/zkri-2015-1849.Search in Google Scholar

18. Sheldrick, G. M. Crystal structure refinement with Shelxl. Acta Crystallogr. 2015, A71, 3; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

19. Berger, J. Infrared and Raman spectra of CuSO4, 5H2O; CuSO4, 5D2O; and CuSeO4, 5H2O. J. Raman Spectrosc. 1976, 5, 103–114; https://doi.org/10.1002/jrs.1250050202.Search in Google Scholar

20. Kretzschmar, J., Jordan, N., Brendler, E., Tsushima, S., Franzen, C., Foerstendorf, H., Brendler, V., Heim, K. Spectroscopic evidence for selenium (IV) dimerization in aqueous solution. Dalton Trans. 2015, 44, 10508–10515; https://doi.org/10.1039/c5dt00730e.Search in Google Scholar PubMed

21. Valkonen, J. Crystal structures, infrared-spectra, and thermal behavior of calcium hydrogenselenite monohydrate Ca(HSeO3)2H2O, and dicalcium diselenite bis(hydrogenselenite) Ca2(HSeO3)2(Se2O5). J. Solid State Chem. 1986, 65, 363–369; https://doi.org/10.1016/0022-4596(86)90109-x.Search in Google Scholar

22. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, Applications in Coordination, Organometallic, and Bioinorganic Chemistry; John Wiley and Sons: Hoboken, 2009; p. 54.10.1002/9780470405888Search in Google Scholar

23. Jahn, H. A., Teller, E. Stability of polyatomic molecules in degenerate electronic states. Proc. R. Soc. London, Ser. 1937, A161, 220.10.1098/rspa.1937.0142Search in Google Scholar

24. Wagener, M. Synthese, Charakterisierung und strukturchemische Aspekte von Kupfer-und Silberchalkogenohalogeniden sowie von Halogeno-und Oxochalkogenaten (IV), 2005. Dissertation, Siegen. https://d-nb.info/97663936X/34.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zkri-2023-0004).


Received: 2023-01-19
Accepted: 2023-03-16
Published Online: 2023-03-30
Published in Print: 2023-05-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2023-0004/html
Scroll to top button