Skip to main content
Log in

Ewing Sarcoma Drug Therapy: Current Standard of Care and Emerging Agents

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Ewing sarcoma is a translocation-associated sarcoma mainly impacting adolescents and young adults. The classic translocation (EWSR1::FLI1) leads to a fusion oncoprotein that functions as an aberrant transcription factor. As such, the oncogenic driver of this disease has been difficult to target pharmacologically and, therefore, the systemic therapies used to treat patients with Ewing sarcoma have typically been non-selective cytotoxic chemotherapy agents. The current review highlights recent clinical trials from the last decade that provide the evidence base for contemporary drug therapy for patients with Ewing sarcoma, while also highlighting novel therapies under active clinical investigation in this disease. We review recent trials that have led to the establishment of interval-compressed chemotherapy as an international standard for patients with newly diagnosed localized disease. We further highlight recent trials that have shown a lack of demonstrable benefit from high-dose chemotherapy or IGF-1R inhibition for patients with newly diagnosed metastatic disease. Finally, we provide an overview of chemotherapy regimens and targeted therapies used in the management of patients with recurrent Ewing sarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zöllner SK, et al. Ewing sarcoma-diagnosis, treatment, clinical challenges and future perspectives. J Clin Med Res. 2021;10:1685.

  2. Womer RB, et al. Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30:4148–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Granowetter L, et al. Dose-intensified compared with standard chemotherapy for nonmetastatic Ewing sarcoma family of tumors: a Children’s Oncology Group Study. J Clin Oncol. 2009;27:2536–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ash S, et al. Improved outcome in local ewing sarcoma with an Intensified Pilot Treatment Protocol SCMCIE 94. J Pediatr Hematol Oncol. 2019;41:105–11.

    Article  PubMed  Google Scholar 

  5. Whelan J, et al. High-dose chemotherapy and blood autologous stem-cell rescue compared with standard chemotherapy in localized high-risk Ewing sarcoma: results of Euro-E.W.I.N.G.99 and Ewing-2008. J Clin Oncol. 2018;36:JCO2018782516.

    Article  PubMed  Google Scholar 

  6. Gaspar N, et al. Risk adapted chemotherapy for localised Ewing’s sarcoma of bone: the French EW93 study. Eur J Cancer. 2012;48:1376–85.

    Article  PubMed  Google Scholar 

  7. Brunetto AL, et al. Carboplatin in the treatment of Ewing sarcoma: results of the first Brazilian collaborative study group for Ewing sarcoma family tumors-EWING1. Pediatr Blood Cancer. 2015;62:1747–53.

    Article  CAS  PubMed  Google Scholar 

  8. Dantonello TM, et al. Cooperative trial CWS-91 for localized soft tissue sarcoma in children, adolescents, and young adults. J Clin Oncol. 2009;27:1446–55.

    Article  CAS  PubMed  Google Scholar 

  9. Sparber-Sauer M, et al. Long-term results from the multicentric European randomized phase 3 trial CWS/RMS-96 for localized high-risk soft tissue sarcoma in children, adolescents, and young adults. Pediatr Blood Cancer. 2022;69: e29691.

    Article  CAS  PubMed  Google Scholar 

  10. Koscielniak E, et al. Long-term clinical outcome and prognostic factors of children and adolescents with localized rhabdomyosarcoma treated on the CWS-2002P Protocol. Cancers. 2022;14:899.

  11. Koscielniak E, et al. Extraskeletal Ewing sarcoma in children, adolescents, and young adults. An analysis of three prospective studies of the Cooperative Weichteilsarkomstudiengruppe (CWS). Pediatr Blood Cancer. 2021;68: e29145.

    Article  CAS  PubMed  Google Scholar 

  12. Leavey PJ, et al. Phase III trial adding vincristine-topotecan-cyclophosphamide to the initial treatment of patients with nonmetastatic Ewing sarcoma: a Children’s Oncology Group Report. J Clin Oncol. 2021;39:4029–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Skinner R, Cotterill SJ, Stevens MC. Risk factors for nephrotoxicity after ifosfamide treatment in children: a UKCCSG Late Effects Group study. United Kingdom Children’s Cancer Study Group. Br J Cancer. 2000;82:1636–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Le Deley M-C, et al. Cyclophosphamide compared with ifosfamide in consolidation treatment of standard-risk Ewing sarcoma: results of the randomized noninferiority Euro-EWING99-R1 trial. J Clin Oncol. 2014;32:2440–8.

    Article  PubMed  Google Scholar 

  15. Paulussen M, et al. Results of the EICESS-92 study: two randomized trials of Ewing’s sarcoma treatment–cyclophosphamide compared with ifosfamide in standard-risk patients and assessment of benefit of etoposide added to standard treatment in high-risk patients. J Clin Oncol. 2008;26:4385–93.

    Article  CAS  PubMed  Google Scholar 

  16. Brennan B, et al. Comparison of two chemotherapy regimens in patients with newly diagnosed Ewing sarcoma (EE2012): an open-label, randomised, phase 3 trial. Lancet. 2022;400:1513–21.

    Article  CAS  PubMed  Google Scholar 

  17. Dirksen U, Koch R, Bhadri V, Brichard B, Faldum A. Efficacy of maintenance therapy with zoledronic acid in patients with localized Ewing sarcoma: report from the international Ewing 2008 trial. J Clin Oncol. 2020;38:11523–11523.

    Article  Google Scholar 

  18. Morland B, Platt K, Whelan JS. A phase II window study of irinotecan (CPT-11) in high risk Ewing sarcoma: a Euro-E.W.I.N.G. study. Pediatr Blood Cancer. 2014;61:442–5.

    Article  CAS  PubMed  Google Scholar 

  19. Bomgaars LR, et al. Phase II trial of irinotecan in children with refractory solid tumors: a Children’s Oncology Group Study. J Clin Oncol. 2007;25:4622–7.

    Article  CAS  PubMed  Google Scholar 

  20. Asaftei SD, et al. Front-line window therapy with temozolomide and irinotecan in patients with primary disseminated multifocal Ewing sarcoma: results of the ISG/AIEOP EW-2 Study. Cancers. 2021;13:3046.

  21. Ladenstein R, et al. Primary disseminated multifocal Ewing sarcoma: results of the Euro-EWING 99 trial. J Clin Oncol. 2010;28:3284–91.

    Article  CAS  PubMed  Google Scholar 

  22. Oberlin O, et al. Impact of high-dose busulfan plus melphalan as consolidation in metastatic Ewing tumors: a study by the Société Française des Cancers de l’Enfant. J Clin Oncol. 2006;24:3997–4002.

    Article  CAS  PubMed  Google Scholar 

  23. Mora J, et al. GEIS-21: a multicentric phase II study of intensive chemotherapy including gemcitabine and docetaxel for the treatment of Ewing sarcoma of children and adults: a report from the Spanish sarcoma group (GEIS). Br J Cancer. 2017;117:767–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Magnan H, et al. Ifosfamide dose-intensification for patients with metastatic Ewing sarcoma. Pediatr Blood Cancer. 2015;62:594–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Loschi S, et al. Tandem high-dose chemotherapy strategy as first-line treatment of primary disseminated multifocal Ewing sarcomas in children, adolescents and young adults. Bone Marrow Transplant. 2015;50:1083–8.

    Article  CAS  PubMed  Google Scholar 

  26. Lashkari A, et al. Tandem high-dose chemotherapy followed by autologous transplantation in patients with locally advanced or metastatic sarcoma. Anticancer Res. 2009;29:3281–8.

    CAS  PubMed  Google Scholar 

  27. Burke MJ, Walterhouse DO, Jacobsohn DA, Duerst RE, Kletzel M. Tandem high-dose chemotherapy with autologous peripheral hematopoietic progenitor cell rescue as consolidation therapy for patients with high-risk Ewing family tumors. Pediatr Blood Cancer. 2007;49:196–8.

    Article  PubMed  Google Scholar 

  28. Rosenthal J, et al. High-dose therapy with hematopoietic stem cell rescue in patients with poor prognosis Ewing family tumors. Bone Marrow Transplant. 2008;42:311–8.

    Article  CAS  PubMed  Google Scholar 

  29. Dirksen U, et al. High-dose chemotherapy compared with standard chemotherapy and lung radiation in ewing sarcoma with pulmonary metastases: results of the European Ewing Tumour Working Initiative of National Groups, 99 trial and EWING 2008. J Clin Oncol. 2019;37:3192–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Koch R, et al. High-dose treosulfan and melphalan as consolidation therapy versus standard therapy for high-risk (metastatic) Ewing sarcoma. J Clin Oncol. 2022;40:2307–20.

    Article  CAS  PubMed  Google Scholar 

  31. Felgenhauer JL, et al. A pilot study of low-dose anti-angiogenic chemotherapy in combination with standard multiagent chemotherapy for patients with newly diagnosed metastatic Ewing sarcoma family of tumors: a Children’s Oncology Group (COG) Phase II study NCT00061893. Pediatr Blood Cancer. 2013;60:409–14.

    Article  CAS  PubMed  Google Scholar 

  32. Miser JS, et al. Treatment of metastatic Ewing sarcoma/primitive neuroectodermal tumor of bone: evaluation of increasing the dose intensity of chemotherapy—a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2007;49:894–900.

    Article  PubMed  Google Scholar 

  33. DuBois S, et al. Randomized phase III trial of ganitumab with interval-compressed chemotherapy for patients with newly diagnosed metastatic Ewing sarcoma: a report from the Children's Oncology Group. J Clin Oncol. (in press).

  34. Leavey PJ, et al. Prognostic factors for patients with Ewing sarcoma (EWS) at first recurrence following multi-modality therapy: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2008;51:334–8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Stahl M, et al. Risk of recurrence and survival after relapse in patients with Ewing sarcoma. Pediatr Blood Cancer. 2011;57:549–53. https://doi.org/10.1002/pbc.23040.

    Article  PubMed  Google Scholar 

  36. Thompson PA, et al. Pharmacokinetics of irinotecan and its metabolites in pediatric cancer patients: a report from the children’s oncology group. Cancer Chemother Pharmacol. 2008;62:1027–37.

    Article  CAS  PubMed  Google Scholar 

  37. McGregor LM, et al. Dose escalation of intravenous irinotecan using oral cefpodoxime: a phase I study in pediatric patients with refractory solid tumors. Pediatr Blood Cancer. 2012;58:372–9.

    Article  PubMed  Google Scholar 

  38. Pappo AS, et al. Two consecutive phase II window trials of irinotecan alone or in combination with vincristine for the treatment of metastatic rhabdomyosarcoma: the Children’s Oncology Group. J Clin Oncol. 2007;25:362–9.

    Article  CAS  PubMed  Google Scholar 

  39. Raciborska A, et al. Vincristine, irinotecan, and temozolomide in patients with relapsed and refractory Ewing sarcoma. Pediatr Blood Cancer. 2013;60:1621–5.

    Article  CAS  PubMed  Google Scholar 

  40. Meyers PA, Ambati SR, Slotkin EK, Cruz FD, Wexler LH. The addition of cycles of irinotecan/temozolomide (i/T) to cycles of vincristine, doxorubicin, cyclophosphamide (VDC) and cycles of ifosfamide, etoposide (IE) for the treatment of Ewing sarcoma (ES). J Clin Oncol. 2018;36:10533. https://doi.org/10.1200/jco.2018.36.15_suppl.10533.

    Article  Google Scholar 

  41. Wagner LM, et al. Phase I trial of two schedules of vincristine, oral irinotecan, and temozolomide (VOIT) for children with relapsed or refractory solid tumors: a Children’s Oncology Group phase I consortium study. Pediatr Blood Cancer. 2010;54:538–45. https://doi.org/10.1002/pbc.22407.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Saylors RL, et al. Cyclophosphamide plus topotecan in children with recurrent or refractory solid tumors: a pediatric oncology group phase II study. J Clin Oncol. 2001;19:3463–9. https://doi.org/10.1200/jco.2001.19.15.3463.

    Article  CAS  PubMed  Google Scholar 

  43. Fox E, et al. Phase II study of sequential gemcitabine followed by docetaxel for recurrent Ewing sarcoma, osteosarcoma, or unresectable or locally recurrent chondrosarcoma: results of sarcoma alliance for research through collaboration study 003. Oncologist. 2012;17:321–9. https://doi.org/10.1634/theoncologist.2010-0265.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ferrari S, et al. Response to high-dose ifosfamide in patients with advanced/recurrent Ewing sarcoma. Pediatr Blood Cancer. 2009;(5):581–4. https://doi.org/10.1002/pbc.21917.

  45. McCabe MG, et al. Results of the second interim assessment of rEECur, an international randomized controlled trial of chemotherapy for the treatment of recurrent and primary refractory Ewing sarcoma (RR-ES). J Clin Oncol. 2020;38:11502–11502. https://doi.org/10.1200/jco.2020.38.15_suppl.11502.

    Article  Google Scholar 

  46. Garnett MJ, et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature. 2012;483:570–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Choy E, et al. Phase II study of olaparib in patients with refractory Ewing sarcoma following failure of standard chemotherapy. BMC Cancer. 2014;14:813.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chugh R, et al. SARC025 arms 1 and 2: A phase 1 study of the poly(ADP-ribose) polymerase inhibitor niraparib with temozolomide or irinotecan in patients with advanced Ewing sarcoma. Cancer. 2021;127:1301–10. https://doi.org/10.1002/cncr.33349.

    Article  CAS  PubMed  Google Scholar 

  49. Schafer ES, et al. Phase 1/2 trial of talazoparib in combination with temozolomide in children and adolescents with refractory/recurrent solid tumors including Ewing sarcoma: a Children’s Oncology Group Phase 1 Consortium study (ADVL1411). Pediatr Blood Cancer. 2020. https://doi.org/10.1002/pbc.28073.

    Article  PubMed  Google Scholar 

  50. Federico SM, et al. A phase I trial of talazoparib and irinotecan with and without temozolomide in children and young adults with recurrent or refractory solid malignancies. Eur J Cancer. 2020;137:204–13.

    Article  CAS  PubMed  Google Scholar 

  51. Wilhelm SM, et al. Regorafenib (BAY 73–4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer. 2011;129:245–55.

    Article  CAS  PubMed  Google Scholar 

  52. Duffaud F, et al. Results of randomized, placebo (PL)-controlled phase II study evaluating efficacy and safety of regorafenib (REG) in patients (pts) with metastatic osteosarcoma (metOS), on behalf of the French Sarcoma Group (FSG) and Unicancer. J Clin Oncol. 2018;36:11504–11504. https://doi.org/10.1200/jco.2018.36.15_suppl.11504.

    Article  Google Scholar 

  53. Collier AB, et al. Outcome of patients with relapsed or progressive Ewing sarcoma enrolled on cooperative group phase 2 clinical trials: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2021. https://doi.org/10.1002/pbc.29333.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Attia S, et al. A phase II trial of regorafenib in patients with advanced Ewing sarcoma and related tumors of soft tissue and bone: SARC024 trial results. Cancer Med. 2022. https://doi.org/10.1002/cam4.5044.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Italiano A, et al. Cabozantinib in patients with advanced Ewing sarcoma or osteosarcoma (CABONE): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2020;21:446–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Harlow ML, et al. Lurbinectedin inactivates the Ewing sarcoma oncoprotein EWS-FLI1 by redistributing it within the nucleus. Cancer Res. 2016;76:6657–68. https://doi.org/10.1158/0008-5472.can-16-0568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Subbiah V, et al. Antitumor activity of lurbinectedin, a selective inhibitor of oncogene transcription, in patients with relapsed Ewing sarcoma: results of a basket phase II study. Clin Cancer Res. 2022;28:2762–70. https://doi.org/10.1158/1078-0432.ccr-22-0696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ludwig JA, et al. TK216 for relapsed/refractory Ewing sarcoma: interim phase 1/2 results. J Clin Orthod. 2021;39:11500–11500.

    Google Scholar 

  59. Kennedy AL, et al. Functional, chemical genomic, and super-enhancer screening identify sensitivity to cyclin D1/CDK4 pathway inhibition in Ewing sarcoma. Oncotarget. 2015;6:30178–93. https://doi.org/10.18632/oncotarget.4903.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sankar S, et al. Reversible LSD1 inhibition interferes with global EWS/ETS transcriptional activity and impedes Ewing sarcoma tumor growth. Clin Cancer Res. 2014;20:4584–97. https://doi.org/10.1158/1078-0432.ccr-14-0072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven G. DuBois.

Ethics declarations

Conflict of interest

BAS and AG declare that they have no conflicts of interest that might be relevant to the contents of this manuscript. SGD reports consulting fees for advisory board participation from Amgen, Bayer and Jazz and travel expenses from Loxo Oncology, Roche and Salarius.

Funding

Supported by Alex’s Lemonade Stand Foundation (SGD).

Ethics approval

Not applicable to this literature review.

Consent

Not applicable to this literature review.

Data availability statement

Not applicable to this literature review.

Code availability

Not applicable to this literature review.

Author contributions

All authors: literature review; drafting manuscript; editing manuscript; final approval of manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Setty, B.A., Gikandi, A. & DuBois, S.G. Ewing Sarcoma Drug Therapy: Current Standard of Care and Emerging Agents. Pediatr Drugs 25, 389–397 (2023). https://doi.org/10.1007/s40272-023-00568-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-023-00568-9

Navigation