Skip to main content
Log in

The Black Hole Event Horizon as a Limited Two-Way Membrane

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

It is shown that under a set of straightforward propositions there exists, at the event horizon and at nonzero radii inside the event horizon of a nonrotating, uncharged, spherically symmetric black hole (BH), under reasonable curvature constraints, a nonempty set of virtual exchange particle modes which can propagate to the black hole’s exterior. This finding reveals that a BH event horizon is not a one-way membrane, but instead a limited two-way membrane. The paper’s technology also permits presentation of what is called virtual cosmic censorship, which requires that the aforesaid virtual exchange particle mode propagation tend to zero at the singularity limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Notes

  1. See [2], Sec. 34.2–4 and [9], Ch. 12, for detailed technical analysis of these terms.

  2. See [3] for the definition of the term “\(r\)-coordinate”.

  3. Associated with the Hamiltonian operator \(i\hbar\partial/\partial t\) [9, 14, 22], and therefore the Killing vector \(\partial/\partial t\) [21].

  4. Where \(|0_{M}\rangle\) denotes the vacuum state for a flat (Minkowski) space-time region.

  5. Ref. [22], Sec. 17.4; [14], Box 8-1. This paper will only consider tree-level diagram interactions such as depicted in Fig. 2, without closed loops. However, closed-loop Feynman diagrams and their processes must also conserve the overall momentum (see [14], Sec. 8.4.2, 8.4.5–8.4.6 regarding the virtual photon and closed-loop analysis; also [16], Sec. 6.2).

  6. \(\mathfrak{N}\cap\beta^{+}=\emptyset\).

  7. See, e.g., [14], Sec. 8.6; [15], Ch. 1.4; [24], pp. 94–96 and Fig. 61.

  8. Considering Eq. (3), it is seen that qf-truncation significantly reduces the amplitude for the occurrence of the subject interaction between the source at \(x_{\textrm{eh}}\) and sink at \(y_{+}\).

References

  1. S. W. Hawking, “Particle creation by black holes”, Commun. Math. Phys. 43, 199–220 (1975).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W. H. Freeman and Company, NY, 1973).

    Google Scholar 

  3. E. F. Taylor and J. A. Wheeler, Exploring Black Holes—Introduction to General Relativity (Addison–Wesley–Longman, NY, 2000).

    Google Scholar 

  4. V. F. Mukhanov and S. Winitzki, Introduction to Quantum Effects in Gravity (Cambridge University Press, NY, 2007).

    Book  MATH  Google Scholar 

  5. R. D’Inverno, Introducing Einstein’s Relativity (Clarendon Press, Oxford, 1992).

    MATH  Google Scholar 

  6. S. W. Hawking and R. Penrose, The Nature of Space and Time (Princeton University Press, Princeton, NJ, 1996).

    MATH  Google Scholar 

  7. J. Maldacena, “Black holes, wormholes and the secrets of quantum spacetime,” Scientific American 315 (5), 26–31 (2016).

    Article  ADS  Google Scholar 

  8. R. M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (University of Chicago Press, Chicago, IL, 1994).

    MATH  Google Scholar 

  9. R. M. Wald, General Relativity (University of Chicago Press, Chicago, IL 1984).

    Book  MATH  Google Scholar 

  10. N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982).

    Book  MATH  Google Scholar 

  11. T. Jacobson, “Introduction to quantum fields in curved spacetime and the Hawking effect,” gr-qc/0308048.

  12. R. K. Kurtus, Gravity and Gravitation (SfC Publishing Co., Lake Oswego, OR, 2014).

    Google Scholar 

  13. S. Weinberg, The Quantum Theory of Fields (Vol. I, Cambridge University Press, NY, 2005).

    MATH  Google Scholar 

  14. R. D. Klauber, Student Friendly Quantum Field Theory (Sandtrove Press, Fairfield, IA, 2013).

    Google Scholar 

  15. A. Zee, Quantum Field Theory in a Nutshell (Princeton University Press, Princeton, NJ, 2003).

    MATH  Google Scholar 

  16. M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory (Economy Edition, Westview Press, Reading, MA, 2016).

  17. G. Sterman, An Introduction to Quantum Field Theory (Cambridge University Press, Cambridge, 1993).

    Book  Google Scholar 

  18. P. J. E. Peebles, Quantum Mechanics (Princeton University Press, Princeton, NJ, 1992).

    Book  MATH  Google Scholar 

  19. L. Susskind and A. Friedman, Quantum Mechanics—The Theoretical Minimum (Basic Books, NY, 2014).

    MATH  Google Scholar 

  20. D. Griffiths, Introduction to Elementary Particles (2nd Rev. Ed., Wiley-VCH, Weinheim, 2008).

    MATH  Google Scholar 

  21. R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe (Vintage Books, NY, 2004).

    MATH  Google Scholar 

  22. T. Lancaster and S. J. Blundell, Quantum Field Theory for the Gifted Amateur (Oxford University Press, NY, 2014).

    Book  MATH  Google Scholar 

  23. P. Teller, An Interpretive Introduction to Quantum Field Theory (Princeton University Press, Princeton, NJ, 1995).

    MATH  Google Scholar 

  24. R. P. Feynman, QED (Princeton University Press, Princeton, NJ, 1985).

  25. R. D. Klauber, “Modern physics and subtle realms: not mutually exclusive”, Journal of Scientific Exploration 14 (2), 275–279 (2000).

    Google Scholar 

  26. J. R. Lucas and P. E. Hodgson, Spacetime and Electromagnetism: An Essay on the Philosophy of the Special Theory of Relativity (Clarendon Press, NY, 1990).

    MATH  Google Scholar 

  27. E. F. Taylor and J. A. Wheeler, Spacetime physics: Introduction to Special Relativity (2nd Ed., W.H. Freeman, NY, 1992).

    Google Scholar 

  28. T. Frankel, Gravitational Curvature, An Introduction to Einstein’s Theory (W. H. Freeman, San Francisco, CA, 1979).

    MATH  Google Scholar 

  29. A. Wipf, “Quantum fields near black holes,” hep-th/9801025.

  30. L. H. Ford, “Quantum Field Theory in Curved Spacetime,” gr-qc/9707062.

  31. E. C. G. Stueckelberg, Helv. Phys. Acta 15, 23 (1942).

    ADS  MathSciNet  Google Scholar 

  32. R. P. Feynman, Phys. Rev. 74, 939 (1948).

    Article  ADS  MathSciNet  Google Scholar 

  33. J. Schwichtenberg, Physics from Symmetry (Springer, Switzerland, 2015).

    Book  MATH  Google Scholar 

  34. M. Nauenberg, “Einstein’s equivalence principle in quantum mechanics revisited,” Am. J. Phys. 84 (11), (2016).

  35. C. J. Eliezer and P. G. Leach, “The equivalence principle and quantum mechanics”, Am. J. Phys. 45, 1218–1221 (1977).

    Article  ADS  Google Scholar 

  36. A. W. Overhauser and R. Collela, “Experimental test of gravitational induced quantum interference,” Phys. Rev. Lett. 33, 1237–1239 (1974).

    Article  ADS  Google Scholar 

  37. D. M. Greenburg and A. W. Overhauser, “Coherence effects in neutron diffraction and gravity experiments,” Rev. Mod. Phys. 51, 43–78 (1979).

    Article  ADS  Google Scholar 

  38. U. Bonse and T. Wroblewski, “Measurement of neutron quantum interference in non-inertial frames,” Phys. Rev. Lett. 51, 1401–1404 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Jonathan Wolk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolk, B.J. The Black Hole Event Horizon as a Limited Two-Way Membrane. Gravit. Cosmol. 29, 79–87 (2023). https://doi.org/10.1134/S0202289323010139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289323010139

Navigation