Skip to main content
Log in

Coordinates in General Relativity: Orbit, Velocity, and Time form Perihelion to Aphelion

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

In general relativity, coordinate transformations are often made to simplify calculations, and theoretical predictions are calculated in some specific coordinates. We take the test particle’s motion in Schwarzschild space-time as an example, to illustrate that the solutions for orbit and velocity as well as the time from perihelion to aphelion depend on the coordinates employed for the calculations, even if they are formulated in terms of orbital energy and angular momentum. The aim of this work is to demonstrate that coordinate transformations may change the solutions, and solutions achieved in specific coordinates may not be the final answer and should be mapped into the observer’s reference frame for being compared with observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. Bodenner and C. Will, Am. J. Phys. 71, 770 (2003).

    Article  ADS  Google Scholar 

  2. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972).

    Google Scholar 

  3. P. Fromholz, E. Poisson, and C. M. Will, Am. J. Phys. 82, 295 (2014).

    Article  ADS  Google Scholar 

  4. R. P. Kerr and A. Schild, Gen. Rel. Grav. 41, 2485 (2009).

    Article  ADS  Google Scholar 

  5. V. Brumberg, Relativistic Celesctial Mechanics (Nauka, Moscow, 1972).

    Google Scholar 

  6. R. V. Wagoner and C. M. Will, Astrophys. J. 210, 764 (1976).

    Article  ADS  Google Scholar 

  7. R. Epstein, Astrophys. J. 219, 92 (1977).

    Article  ADS  Google Scholar 

  8. M. P. Haugan, Astrophys. J. 296, 1 (1985).

    Article  ADS  Google Scholar 

  9. T. Damour and N. Deruelle, Ann. Inst. H. Poincaré 43, 107 (1985).

    Google Scholar 

  10. M. H. Soffel, H. Ruder, and M. Schneider, Celestial Mech. 40, 77 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  11. T. Damour and G. Schäfer, Nuovo Cimento B 101, 127 (1988).

    Article  ADS  Google Scholar 

  12. M. H. Soffel, Relativity in Astrometry, Celestial Mechanics and Geodesy (Springer, Berlin, 1989).

    Book  Google Scholar 

  13. V. Brumberg, Essential Relativistic Celesctial Mechanics (Taylor & Francis Group, Abingdon, 1991).

    MATH  Google Scholar 

  14. S. A. Klioner and S. M. Kopeikin, Astrophys. J. 427, 951 (1994).

    Article  ADS  Google Scholar 

  15. S. M. Kopeikin and V. A. Potapov, Astron. Rep. 38, 104 (1994).

    ADS  Google Scholar 

  16. R. M. Memmesheimer, A. Gopakumar, and G. Schäfer, Phys. Rev. D 70, 104011 (2004).

    Article  ADS  Google Scholar 

  17. S. Kopeikin, M. Efroimsky, and G. Kaplan, Relativistic Celestial Mechanics of the Solar System (Wiley, New York, 2012).

    MATH  Google Scholar 

  18. L.-S. Li, Astrophys. Space Sci. 341, 323 (2012).

    Article  ADS  Google Scholar 

  19. S. Hergt, A. Shah, and G. Schäfer, Phys. Rev. Lett. 111, 021101 (2013).

    Article  ADS  Google Scholar 

  20. Y. Boetzel, A. Susobhanan, A. Gopakumar, A. Klein, and P. Jetzer, Phys. Rev. D, 96, 044011 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  21. B. Yang and W. Lin, Gen. Rel. Grav. 52, 49 (2020).

    Article  ADS  Google Scholar 

  22. B. Yang and W. Lin, Eur. Phys. J. Plus. 135, 137 (2020).

    Article  ADS  Google Scholar 

  23. B. Yang and W. Lin, Grav. Cosmol. 26, 373 (2020).

    Article  ADS  Google Scholar 

  24. W. Gao, B. Yang, and W. Lin, Grav. Cosmol. 27, 240 (2021).

    Article  ADS  Google Scholar 

  25. S. M. Kopeikin, Eur. Phys. J. Plus 135, 466 (2020).

    Article  Google Scholar 

  26. R. Abuter et al. (GRAVITY Collaboration), Astron. Astrophys. 636, L5 (2020).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the referee for constructive comments and suggestions to promote the quality of this paper.

Funding

This work was supported in part by the National Natural Science Foundation of China (grant number: 11973025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Lin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, W., Li, J. & Yang, B. Coordinates in General Relativity: Orbit, Velocity, and Time form Perihelion to Aphelion. Gravit. Cosmol. 29, 95–102 (2023). https://doi.org/10.1134/S0202289323010127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289323010127

Navigation