Skip to main content
Log in

Modern Approaches to Genetic Engineering in the Orchidaceae Family

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Orchids are one of the most widespread groups of flowering plants with a wide geographical range and species diversity. A number of tropical and subtropical species are used as decorative, medicinal, and edible. The increased demand for plant material, while a large number of species are under threat of extinction in nature, makes growing of orchids in culture relevant. Traditionally, new interesting forms have been obtained through hybridization and selection, which require considerable time. Not all requirements for elite varieties can be solved by traditional breeding methods. The application of the achievements of modern molecular biology significantly expands the possibilities of breeders. The development of genetic engineering methods allows introducing both new heterologous genes to orchids and editing their own genes, which can significantly speed up and increase the success of the traditional selection process. Members of the Orchidaceae family can be used not only for introduction of valuable heterologous genes but also as a source of unique genes for the improvement of cultivated species of other families. The review examines the current state and prospects of genetic engineering of orchids and their use as recipients and donors of genes for genetic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Anzai, H., Ishii, Y., Shichinohe, M., et al., Transformation of Phalaenopsis by particle bombardment, Plant Tissue Cult. Lett., 1996, vol. 13, pp. 265–272. https://doi.org/10.5511/plantbiotechnology1984.13.265

    Article  CAS  Google Scholar 

  2. Arora, L. and Narula, A., Gene editing and crop improvement using CRISPR-Cas9 system, Front. Plant Sci., 2017, vol. 8, p. 1932. https://doi.org/10.3389/fpls.201701932

    Article  PubMed  PubMed Central  Google Scholar 

  3. Atichart, P., Bunnag, S., and Theerakulpisut, P., Agrobacterium-mediated transformation of Dendrobium secundum (Bl.) Lindl with antisence ACC oxidase, Asian J. Plant Sci., 2007, vol. 6, no. 7, pp. 1065–1071. https://doi.org/10.3923/ajps.2007.1065.1071

    Article  CAS  Google Scholar 

  4. Belarmino, M.M. and Mii, M., Agrobacterium-mediated genetic transformation of a phalaenopsis orchid, Plant Cell Rep., 2000, vol. 19, pp. 435–442. https://doi.org/10.1007/s002990050752

    Article  CAS  PubMed  Google Scholar 

  5. Chai, D. and Yu, H., Recent advances in transgenic orchid production, Orchid Sci. Biotechnol., 2007, vol. 1, no. 2, pp. 34–39

    Google Scholar 

  6. Chai, M.L., Xu, C.J., Senthil, K.K., et al., Stable transformation of protocorm-like bodies in Phalaenopsis orchid mediated by Agrobacterium tumefaciens, Sci. Hortic., 2002, vol. 96, pp. 213–224. https://doi.org/10.1016/S0304-4238(02)00084-5

    Article  CAS  Google Scholar 

  7. Chai, D., Lee, S.M., Ng, J.H., and Yu, H., L-Methionine sulfoximine as a novel selection agent for genetic transformation of orchids, J. Biotechnol., 2007, vol. 131, pp. 466–472. https://doi.org/10.1016/j.jbiotec.2007.07.951

    Article  CAS  PubMed  Google Scholar 

  8. Chan, Y.L., Lin, K.H., Liao, L.J., et al., Gene stacking in Phalaenopsis orchid enhances dual tolerance to pathogen attack, Transgenic Res., 2005, vol. 14, pp. 279–288. https://doi.org/10.1007/s11248-005-0106-5

    Article  CAS  PubMed  Google Scholar 

  9. Chen, M., Choi, Y., Voytas, D.F., et al., Mutations in the Arabidopsis VAR2 locus cause leaf variegation due to the loss of a chloroplast FtsH protease, Plant J., 2000, vol. 22, pp. 303–313. https://doi.org/10.1046/j.1365-313x.2000.00738.x

    Article  PubMed  Google Scholar 

  10. Chen, T.H.H., Han, K.-H., and Huang, P.-L., Genetic transformation of orchids, in Plant Genetic Engineering (Improvement of Commercial Plants), Singh, R.P. and Jaiwal, P.K., Eds., United States: LLC, 2003, pp. 197–221.

  11. Chen, L., Kawai, H., Oku, H., et al., Introduction of Odontoglossum ringsport virus coat protein gene into Cymbidium niveo-marginatum mediated by Agrobacterium tumefaciens to produce transgenic plants, J. Jpn. Soc. Hortic. Sci., 2006, vol. 75, no. 3, pp. 249–255. https://doi.org/10.2503/jjshs.75.249

    Article  CAS  Google Scholar 

  12. Chen, J., Wang, L., Chen, J., et al., Agrobacterium tumefaciens-mediated transformation system for the important medicinal plant Dendrobium catenatum Lindl, In Vitro Cell. Dev. Biol., Plant, 2018, vol. 54, pp. 228–239. https://doi.org/10.1007/s11627-018-9903-4

    Article  CAS  Google Scholar 

  13. Chen, T.Y., Pai, H., Hou, L.Y., et al., Dual resistance of transgenic plants against Cymbidium mosaic virus and Odontoglossum ringspot virus, Sci. Rep., 2019, vol. 9, no. 1, p. 10230. https://doi.org/10.1038/s41598-019-46695-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chia, T.F., Chan, Y.S., and Chua, N.H., The firefly luciferase gene as a non-invasive reporter for Dendrobium transformation, Plant J., 1994, vol. 6, pp. 441–446. https://doi.org/10.1046/j.1365-313X.1994.06030441.x

    Article  CAS  Google Scholar 

  15. Chin, D.P., Mishiba, K., and Mii, M., Agrobacterium-mediated transformation of protocorm-like bodies in Cymbidium, Plant Cell Rep., 2007, vol. 26, pp. 735–743. https://doi.org/10.1007/s00299-006-0284-5

    Article  CAS  PubMed  Google Scholar 

  16. Cox, K.D., Layne, D.R., Scorza, R., et al., Gastrodia anti-fungal protein from the orchid Gastrodia elata confers disease resistance to root pathogens in transgenic tobacco, Planta, 2006, vol. 224, pp. 1373–1383. https://doi.org/10.1007/s00425-006-0322-0

    Article  CAS  PubMed  Google Scholar 

  17. Ding, L., Wang, Y., and Yu, H., Overexpression of DOSOC1, an ortholog of Arabidopsis SOC1, promotes flowering in the orchid Dendrobium Chao Parya Smile, Plant Cell Physiol., 2013, vol. 54, no. 4, pp. 595–608. https://doi.org/10.1093/pcp/pct026

    Article  CAS  PubMed  Google Scholar 

  18. Gnasekaran, P. and Subramaniam, S., Mapping of the interaction between Agrobacterium tumefaciens and Vanda Kasem’s Delight orchid protocorm-like bodies, Indian J. Microbiol., 2015, vol. 55, no. 3, pp. 285–291. https://doi.org/10.1007/s12088-015-0519-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gnasekaran, P., Antony, J.J.J., Uddain, J., et al., Agrobacterium-mediated transformation of the recalcitrant Vanda Kasem’s Delight orchid with higher efficiency, Sci. World J., 2014, vol. 2014, p. 583934. https://doi.org/10.1155/2014/583934

    Article  Google Scholar 

  20. Griesbach, R.J., An improved method for transforming plants through electrophoresis, Plant Sci., 1994, vol. 102, pp. 81–89. https://doi.org/10.1016/0168-9452(94)03936-4

    Article  CAS  Google Scholar 

  21. Gritz, L. and Davies, J., Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Esherihia coli and Saccharomyces cerevisiae, Gene, 1983, vol. 25, pp. 179–188. https://doi.org/10.1016/0378-1119(83)90223-8

    Article  CAS  PubMed  Google Scholar 

  22. Guo, M., Chen, H., Dong, S., et al., CRISPR-Cas gene editing technology and its application prospect in medicinal plants, Chin. Med., 2022, vol. 17, p. 33. https://doi.org/10.1186/s13020-022-00584-w

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hsiao, Y.Y., Fu, C.H., Ho, S.Y., et al., OrchidBase 4.0: a database for orchid genomics and molecular biology, BMC Plant Biol., 2021, vol. 21, p. 371. https://doi.org/10.1186/s12870-021-03140-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hsing, H.X., Lin, Y.J., Tong, Ch.G., et al., Efficient and heritable transformation of Phalaenopsis orchids, Bot. Stud., 2016, vol. 57, p. 30. https://doi.org/10.1186/s40529-016-0146-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Julkifle, A.L., Rathinam, X., Sinniah, U.R., et al., Optimisation of transient green fluorescent protein (GFP) gene expression in Phalaenopsis violacea orchid mediated by Agrobacterium tumefaciens-mediated transformation system, Aust. J. Basic Appl. Sci., 2010, vol. 4, pp. 3424–3432.

    CAS  Google Scholar 

  26. Kasulo, V., Mwabumba, L., and Cry, M., A review of edible orchids in Malawi, J. Hort. For., 2009, vol. 1, no. 7, pp. 133–139. http://www.academicjournals.org/jhf.

    Google Scholar 

  27. Knapp, J.E., Kausch, A.P., and Chandlee, J.M., Transformation of three genera of orchid using the bar gene as a selectable marker, Plant Cell Rep., 2000, vol. 19, pp. 893–898. https://doi.org/10.1007/s002990000202

    Article  CAS  PubMed  Google Scholar 

  28. Koh, K.W., Lu, H.-Ch., and Chan, M.-T., Virus resistance in orchids, Plant Sci., 2014, vol. 228, pp. 26–38. https://doi.org/10.1016/j.plantsci.2014.04.015

    Article  CAS  PubMed  Google Scholar 

  29. Kuehnle, A.R. and Sugii, N., Transformation of Dendrobium orchid using particle gun bombardment of protocorms, Plant Cell Rep., 1992, vol. 11, pp. 484–488. https://doi.org/10.1007/BF00232696

    Article  CAS  PubMed  Google Scholar 

  30. Kui, L., Chen, H., Zhang, W., et al., Building a genetic manipulation tool box for orchid biology: identification of constitutive promoters and application of CRISPR/Cas9 in the orchid, Dendrobium officinale, Front. Plant Sci., 2017, vol. 7, p. 2036. https://doi.org/10.3389/fpls.2016.02036

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kyrpa, T.M., Rudas, V.A., Ovcharenko, O.A., et al., Heterologous expression of Δ9-acyl-lipid desaturase of cyanobacteria in orchid Dendrobium linguella Rchb. F., Fakt. Exp. Evol. Org., 2013. vol. 12. pp. 244–249. http://utgis.org.ua/journals/index.php/Faktory/article/view/80

    Google Scholar 

  32. Lee, Sh., Li, Ch., Liau, Ch., et al., Establishment of an Agrobacterium-mediated genetic transformation procedure for the experimental model orchid Erycina pusilla, Plant Cell Tissue Organ Cult., 2015, vol. 120, pp. 211–220. https://doi.org/10.1007/s11240-014-0596-z

    Article  CAS  Google Scholar 

  33. Li, C.W. and Chan, M.T., Recent protocols on genetic transformation of orchid species, in Orchid Propagation: From Laboratories to Greenhouses-Methods and Protocols, Lee, Y.I. and Yeung, E.T., Eds., New York: Humana Press, 2018. https://doi.org/10.1007/978-1-4939-7771-0_20

  34. Liao, L.J., Pan, I.C., Chan, Y.L., et al., Transgene silencing in Phalaenopsis expressing the coat protein of Cymbidium Mosaic Virus is a manifestation of RNA-mediated resistance, Mol. Breed., 2004, vol. 13, pp. 229–242. https://doi.org/10.1023/B:MOLB.0000022527.68551.30

    Article  CAS  Google Scholar 

  35. Liau, C.H., You, S.J., Prasad, V., et al., Agrobacterium tumefaciens-mediated transformation of an Oncidium orchid, Plant Cell Rep., 2003, vol. 21, pp. 993–998. https://doi.org/10.1007/s00299-003-0614-9

    Article  CAS  PubMed  Google Scholar 

  36. Liu, J.-X., Chiou, Ch.-Y., Shen, Ch.-H., et al., RNA interference-based gene silencing of phytoene synthase impairs growth, carotenoids, and plastid phenotype in Oncidium hybrid orchid, SpringerPlus, 2014, vol. 3, p. 478. https://doi.org/10.1186/2193-1801-3-478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Luo, B.-X., Zhang, L., Zheng, F., et al., Ovule development and in planta transformation of Paphiopedilum Maudiae by Agrobacterium-mediated ovary-injection, Int. J. Mol. Sci., 2021, vol. 22, p. 84. https://doi.org/10.3390/ijms22010084

    Article  CAS  Google Scholar 

  38. Malabadi, R.B. and Nataraja, K., Genetic transformation of Vanilla planifolia by Agrobacterium-tumefaciens using shoot tip sections, Bot. Res. J., 2007, vol. 2, pp. 86–94. https://doi.org/10.3923/rjb.2007.86.94

    Article  CAS  Google Scholar 

  39. Men, S., Ming, X., Liu, R., et al., Agrobacterium-mediated genetic transformation of a Dendrobium orchid, Plant Cell, Tissue Organ Cult., 2003a, vol. 75, pp. 63–71. https://doi.org/10.1023/A:1024627917470

    Article  CAS  Google Scholar 

  40. Men, S., Ming, X., Wang, Y., et al., Genetic transformation of two species of orchid by biolistic bombardment, Plant Cell Rep., 2003b, vol. 21, pp. 592–598. https://doi.org/10.1007/s00299-002-0559-4

    Article  CAS  PubMed  Google Scholar 

  41. Mishiba, K., Chin, D.P., and Mii, M., Agrobacteriummediated transformation of Phalaenopsis by targeting protocorms at an early stage after germination, Plant Cell Rep., 2005, vol. 24, pp. 297–303. https://doi.org/10.1007/s00299-005-0938-8

    Article  CAS  PubMed  Google Scholar 

  42. Mudalige, R.G. and Kuehnle, A.R., Orchid biotechnology in production and improvement, Hortic. Sci., 2004, vol. 39, no. 1, pp. 11–17. https://doi.org/10.21273/HORTSCI.39.1.11

    Article  Google Scholar 

  43. Mursyanti, E., Purwantoro, A., Moeljopawiro, S., et al., Induction of somatic embryogenesis through overexpression of ATRKD4 genes in Phalaenopsis “Sogo Vivien”, Indones. J. Biotechnol., 2015, vol. 20, no. 1, pp. 42–53. https://doi.org/10.22146/ijbiotech.15276

    Article  Google Scholar 

  44. Nagel, A.K., Schnabel, G., Petri, C., et al., Generation and characterization of transgenic plum lines expressing the Gastrodia antifungal protein, HortScience, 2008, vol. 43, no. 5, pp. 1514–1521. https://doi.org/10.21273/HORTSCI.43.5.1514

    Article  Google Scholar 

  45. Niyomtham, K., Bhinija, K., and Huehne, P.S., A direct gene transferring system for Oncidium orchids, a difficult crop for genetic transformation, Agric. Nat. Res., 2018, vol. 52, no. 5, pp. 424–429. https://doi.org/10.1016/j.anres.2018.11.006

    Article  Google Scholar 

  46. Nopitasari, S., Setiawati, Y., and Lawrie, M.D., Development of an agrobacterium-delivered CRISPR/Cas9 for Phalaenopsis amabilis (L.) Blume genome editing system, AIP Conf. Proc., 2020, vol. 2260, p. 060014. https://doi.org/10.1063/5.0015868

    Article  CAS  Google Scholar 

  47. Phlaetita, W., Chin, D.P., Otanga, N.V., et al., High efficiency Agrobacterium-mediated transformation of Dendrobium orchid using protocorms as a target material, Plant Biotechnol., 2015, vol. 32, pp. 323–327. https://doi.org/10.5511/plantbiotechnology.15.0804a

    Article  CAS  Google Scholar 

  48. Phlaetita, W., Chin, D.P., Tokuhara, K., et al., Agrobacterium-mediated transformation of protocormlike bodies in Dendrobium Formidible “Ugusu”, Plant Biotechnol., 2015, vol. 32, pp. 225–231. https://doi.org/10.5511/plantbiotechnology.15.0619a

    Article  CAS  Google Scholar 

  49. Qin, X., Liu, Y., Mao, S., et al., Genetic transformation of lipid transfer protein encoding gene in Phalaenopsis amabilis to enhance cold resistance, Euphytica, 2011, vol. 177, pp. 33–43. https://doi.org/10.1007/s10681-010-0246-4

    Article  CAS  Google Scholar 

  50. Raffeiner, B., Serek, M., and Winkelmann, T., Agrobacterium tumefaciens-mediated transformation of Oncidium and Odontoglossum orchid species with the ethylene receptor mutant gene etr1-1, Plant Cell, Tissue Organ Cult., 2009, vol. 98, pp. 125–134. https://doi.org/10.1007/s11240-009-9545-7

    Article  CAS  Google Scholar 

  51. Ratheesh, S.T. and Bhat, A.I., Genetic transformation and regeneration of transgenic plants from protocorm like bodies of vanilla using Agrobacterium tumefaciens, J. Plant Biochem. Biotechnol., 2011, vol. 20, no. 2, pp. 262–269. https://doi.org/10.1007/s13562-011-0057-2

    Article  CAS  Google Scholar 

  52. Rudas, V.A., Markovskui, O.V., Schinkarchuk, M.V., et al., Production of transgenic orchid Dendrobium linguella RCHB. F. plants, carrying bar gene and cyp11a1 gene of cytochome P450scc, Fakt. Exp. Evol. Org., 2016, vol. 19, pp. 185–187. http://utgis.org.ua/journals/index.php/ Faktory/article/view/662.

    Google Scholar 

  53. Sastry, K.S., Mandal, B., Hammond, J., et al., Encyclopedia of Plant Viruses and Viroids, New Delhi: Springer Nature India Private Limited, 2019, p. 2936. https://doi.org/10.1007/978-81-322-3912-3

  54. Sawettalake, N., Bunnag, S., Wang, Y., et al., DOAP1 Promotes flowering in the orchid Dendrobium Chao Praya Smile, Front. Plant Sci., 2017, vol. 23, vol. 8, p. 400. https://doi.org/10.3389/fpls.2017.00400

  55. Semiarti, E., Orchid biotechnology for Indonesian orchids conservation and industry, AIP Conf. Proc. 2002, 2018, no. 1, p. 020022. https://doi.org/10.1063/1.5050118

    Article  CAS  Google Scholar 

  56. Semiarti, E., Indrianto, A., Purwantoro, A., et al., Agrobacterium-mediated transformation of the wild orchid species Phalaenopsis amabilis, Plant, 2007, vol. 24, no. 3, pp. 265–272. https://doi.org/10.5511/plantbiotechnology.24.265

    Article  CAS  Google Scholar 

  57. Semiarti, E., Indrianto, A., Purwantoro, A., et al., Agrobacterium-mediated transformation of Indonesian orchids for micropropagation, in Genetic Transformation, IntechOpen, 2011. https://doi.org/10.5772/24997

  58. Semiarti, E., Mercuriani, I.S., Rizal, R., et al., Overexpression of PaFT gene in the wild orchid Phalaenopsis amabilis (L.) Blume, AIP Conf. Proc., 2015, vol. 1677, p. 090005. https://doi.org/10.1063/1.4930750

  59. Semiarti, E., Purwantoro, A., and Puspita Sari, I., Biotechnology approaches on characterization, mass propagation, and breeding of indonesian orchids Dendrobium lineale (Rolfe.) and Vanda tricolor (Lindl.) with its phytochemistry, in Orchids Phytochemistry, Biology and Horticulture. Reference Series in Phytochemistry, Merillon, J.M. and Kodja, H., Eds., Cham: Springer-Verlag, 2020a. https://doi.org/10.1007/978-3-030-11257-8_12-1

  60. Semiarti, E., Nopitasari, S., Setiawati, Y., et al., Application of CRISPR/Cas9 genome editing system for molecular breeding of orchid, Indones. J. Biotechnol., 2020b, vol. 25, no. 1, pp. 61–68.

    Article  Google Scholar 

  61. Setiari, N., Purwantoro, A., Moeljopawiro, S., et al., Micropropagation of Dendrobium phalaenopsis Orchid Through Overexpression of Embryo Gene AtRKD4, J. Agric. Sci., 2018, vol. 40, no. 2, pp. 284–294. https://doi.org/10.17503/agrivita.v40i2.1690

    Article  Google Scholar 

  62. Setiawati, Y., Nopitasari, S., Lawrie, M.D., et al., Agrobacterium-mediated transformation facillitates the CRISPR/Cas9 genome editing system in Dendrobium macrophyllum A. Rich orchid, AIP Conf. Proc., 2020, vol. 2260, p. 060016. https://doi.org/10.1063/5.0016200

    Article  CAS  Google Scholar 

  63. Shrestha, B.R., Chin, D.P., Tokuhara, K., et al., Efficient production of transgenic plants of Vanda through sonication-assisted Agrobacterium-mediated transformation of protocorm-like bodies, Plant Biotechnol., 2007, vol. 24, pp. 429–434. https://doi.org/10.5511/plantbiotechnology.24.429

    Article  CAS  Google Scholar 

  64. Sjahril, R. and Mii, M., High-efficiency Agrobacterium-mediated trasnformation of Phalaenopsis using meropenem, a novel antibiotic to eliminate Agrobacterium, J. Hortic. Sci. Biotechnol., 2006, vol. 81, pp. 458–464. https://doi.org/10.1080/14620316.2006.11512088

    Article  Google Scholar 

  65. Sjahril, R., Chin, D., Khan, R., et al., Transgenic Phalaenopsis plants with resistance to Erwinia carotovora produced by introducing wasabi defensin gene using Agrobacterium method, Plant Biotechnol., 2006, vol. 23, pp. 191–194. https://doi.org/10.5511/plantbiotechnology.23.191

    Article  CAS  Google Scholar 

  66. Stillwell, N., McCafferty, H., Zhu, Y.J., et al., Characterization of Brassolaeliocattleya Raye Holmes “Mendenhall” – putatively transformed for resistance to Cymbidium mosaic virus, Lankesteriana, 2013, vol. 13, nos. 1–2, pp. 153–154. https://doi.org/10.15517/lank.v0i0.11632

    Article  Google Scholar 

  67. Su, V. and Hsu, B., Cloning and expression of a putative cytochrome P450 gene that influences the colour of Phalaenopsis flowers, Biotechnol. Lett., 2003, vol. 25, pp. 1933–1939. https://doi.org/10.1023/B:BILE.0000003989.19657.53

    Article  CAS  PubMed  Google Scholar 

  68. Suwanaketchanatit, C., Piluek, J., Peyachoknagul, S., et al., High efficiency of stable genetic transformation in Dendrobium via microprojectile bombardment, Biologia Plantarum, 2007, vol. 51, no. 4, pp. 720–727. https://doi.org/10.1007/s10535-007-0148-z

    Article  CAS  Google Scholar 

  69. Teixeira da Silva, J.A., Orchids: Advances in Tissue Culture, Genetics, Phytochemistry and Transgenic Biotechnology, Floricult. Ornamental Biotechnol., 2013, vol. 7, no. 1, pp. 1–52.

    Google Scholar 

  70. Teixeira da Silva, J.A., Chin, D.P., Van, P.T., and Mii, M., Transgenic orchids, Scientia Horticulturae, 2011, vol. 130, no. 4, pp. 73–680.

    Article  Google Scholar 

  71. Teixeira da Silva, J.A., Dobránszki, J., Cardoso, J.C., et al., Methods for genetic transformation in Dendrobium, Plant Cell Rep., 2016, vol. 35, pp. 483–504. https://doi.org/10.1007/s00299-015-1917-3

    Article  CAS  Google Scholar 

  72. Thiruvengadam, M., Hsu, W.H., and Yang, C.H., Phosphomannose-isomerase as a selectable marker to recover transgenic orchid plants (Oncidium Gower Ramsey), Plant Cell, Tissue Organ Cult., 2011, vol. 104, pp. 239–246. https://doi.org/10.1007s11240-010-9827-0

    Article  CAS  Google Scholar 

  73. Thompson, C.J., Movva, N.R., Tizard, R., et al., Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus, EMBO J., 1987, vol. 6, pp. 2519–2523 https://doi.org/10.1002/j.1460-2075.1987.tb02538.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tong, C.-G., Wu, F.-H., Yuan, Y.-H., et al., High-efficiency CRISPR/Cas-based editing of Phalaenopsis orchid MADS genes, Plant Biotechnol., 2020, vol. 18, pp. 889–891. https://doi.org/10.1111/pbi.13264

    Article  Google Scholar 

  75. Umemura, F., Expression analysis of Phalaenopsis orchid introduced disease resistance gene Chitinase, MSc Thesis (Agro-Environ.), Obihiro Univ., 2007.

  76. Utami, E.S.W., Hariyanto, S., and Manuhara, Y.S.W., Agrobacterium tumefaciens-mediated transformation of Dendrobium lasianthera J.J.Sm: An important medicinal orchid, J. Genet. Eng. Biotechnol., 2018, vol. 16, pp. 703–709. https://doi.org/10.1016/j.jgeb.2018.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wang, X., Bauw, G., Van Damme, E.J., et al., Gastrodianin-like mannose-binding proteins: a novel class of plant proteins with antifungal properties, Plant J., 2001, vol. 25, pp. 651–661. https://doi.org/10.1046/j.1365-313x.2001.00999.x

    Article  CAS  PubMed  Google Scholar 

  78. Yang, J., Lee, H.-J., Shin, D.H., et al., Genetic transformation of Cymbidium orchid by particle bombardmen, Plant Cell Rep., 1999, vol. 18, pp. 978–984. https://doi.org/10.1007/s002990050694

    Article  CAS  Google Scholar 

  79. Yee, N., Abdullah, J.O., Mahmood, M., et al., Co-transfer of gfp, CHS and hptII genes into Oncidium Sharry Baby PLB using the biolistic gun, Afr. J. Biotechnol., 2008, vol. 7, no. 15, pp. 2605–2617. http://www.academicjournals.org/AJB.

    CAS  Google Scholar 

  80. You, S.-J., Liau, Ch.-H., Huang, H.-En., et al., Sweet pepper ferredoxin-like protein (pflp) gene as a novel selection marker for orchid transformation, Planta, 2003, vol. 217, pp. 60–65. https://doi.org/10.1007/s00425-002-0970-7

    Article  CAS  PubMed  Google Scholar 

  81. Yu, H., Yang, S.H., and Goh, C.J., Agrobacterium-mediated transformation of a Dendrobium orchid with the class 1 knox gene DOH1, Plant Cell Rep., 2001, vol. 20, pp. 301–305. https://doi.org/10.1007/s002990100334

    Article  CAS  Google Scholar 

  82. Yu, Z., He, C., Teixeira da Silva, J.A., et al., Molecular cloning and functional analysis of DoUGE related to water-soluble polysaccharides from Dendrobium officinale with enhanced abiotic stress tolerance, Plant Cell, Tissue Organ Cult., 2017, vol. 131, pp. 579–599. https://doi.org/10.1007/s11240-017-1308-2

    Article  CAS  Google Scholar 

  83. Zhang, L., Chin, D.P., and Mii, M., Agrobacteriummediated transformation of protocorm-like bodies in Cattleya, Plant Cell, Tissue Organ Cult., 2010, vol. 103, pp. 41–47. https://doi.org/10.1007/s11240-010-9751-3

    Article  Google Scholar 

  84. Zhu, Y., Meng, C., Zhu, L., et al., Cloning and characterization of DoMYC2 from Dendrobium officinale, Plant Cell, Tissue Organ Cult., 2017, vol. 129, pp. 533–554. https://doi.org/10.1007/s11240-017-1198-3

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported within the framework of the fundamental topic of the Genetic Engineering Department of the ICBGE: III-1-20 Targeted Genome Changes and Pleiotropic Effects in Genetically Transformed Plant Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Ovcharenko.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovcharenko, O.O., Rudas, V.A. Modern Approaches to Genetic Engineering in the Orchidaceae Family. Cytol. Genet. 57, 142–156 (2023). https://doi.org/10.3103/S0095452723020093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452723020093

Keywords:

Navigation