Skip to main content
Log in

Stability Analysis of Resonant Rotation of a Gyrostat in an Elliptic Orbit Under Third-and Fourth-Order Resonances

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

This paper presents the stability of resonant rotation of a symmetric gyrostat under third- and fourth-order resonances, whose center of mass moves in an elliptic orbit in a central Newtonian gravitational field. The resonant rotation is a special planar periodic motion of the gyrostat about its center of mass, i. e., the body performs one rotation in absolute space during two orbital revolutions of its center of mass. The equations of motion of the gyrostat are derived as a periodic Hamiltonian system with three degrees of freedom and a constructive algorithm based on a symplectic map is used to calculate the coefficients of the normalized Hamiltonian. By analyzing the Floquet multipliers of the linearized equations of perturbed motion, the unstable region of the resonant rotation and the region of stability in the first-order approximation are determined in the dimensionless parameter plane. In addition, the third- and fourth-order resonances are obtained in the linear stability region and further nonlinear stability analysis is performed in the third- and fourth-order resonant cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Wittenburg, J., Dynamics of Multibody Systems, 2nd ed., Berlin: Springer, 2008.

    MATH  Google Scholar 

  2. Kane, T. R., Likins, P. W., and Levinson, D. A., Spacecraft Dynamics, London: McGraw-Hill, 1983.

    Book  Google Scholar 

  3. Ge, Zh.-M. and Chen, H.-K., Improved Stability of a Dual-Spin Satellite in Circular Orbit, Jpn. J. Appl. Phys., 1997, vol. 36, no. 2, pp. 948–956.

    MathSciNet  Google Scholar 

  4. Sarychev, V. A. and Mirer, S. A., Relative Equilibria of a Gyrostat Satellite with Internal Angular Momentum along a Principal Axis, Acta Astronaut., 2001, vol. 49, no. 11, pp. 641–644.

    Article  Google Scholar 

  5. Sarychev, V. A., Mirer, S. A., and Degtyarev, A. A., Dynamics of a Gyrostat Satellite with the Vector of Gyrostatic Moment in the Principal Plane of Inertia, Cosmic Research, 2008, vol. 46, no. 1, pp. 60–73; see also: Kosmicheskie Issledovaniya, 2008, vol. 46, no. 1, pp. 61-74.

    Article  Google Scholar 

  6. Sarychev, V. A., Dynamics of an Axisymmetric Gyrostat Satellite under the Action of Gravitational Moment, Cosmic Research, 2010, vol. 48, no. 2, pp. 188–193; see also: Kosmicheskie Issledovaniya, 2010, vol. 48, no. 2, pp. 192-197.

    Article  Google Scholar 

  7. Novikov, M. A., The Stability Boundaries of the Steady Motion of a Satellite with a Gyroscope, J. Appl. Math. Mech., 2010, vol. 74, no. 2, pp. 164–170; see also: Prikl. Mat. Mekh., 2010, vol. 74, no. 2, pp. 230-238.

    Article  MathSciNet  MATH  Google Scholar 

  8. Gutnik, S. A., Santos, L., Sarychev, V. A., and Silva, A., Dynamics of a Gyrostat Satellite Subjected to the Action of Gravity Moment. Equilibrium Attitudes and Their Stability, J. Comput. Syst. Sci. Int., 2015, vol. 54, no. 3, pp. 469–482; see also: Izv. Akad. Nauk. Teor. i Sist. Upravelen., 2015, no. 3, pp. 142-155.

    Article  MathSciNet  MATH  Google Scholar 

  9. Santos, L. F. F. M., Melicio, R., and Silva, A., Gyrostat Dynamics on a Circular Orbit: General Case of Equilibria Bifurcation and Analytical Expressions, in Proc. of the IEEE Internat. Symp. on Power Electronics, Electrical Drives and Motion (Amalfi, Italy, Jun 2018), pp. 1084–1088.

  10. Santos, L. and Melicio, R., Bifurcation of Equilibria for General Case of Gyrostat Satellite on a Circular Orbit, Aerosp. Sci. Technol., 2020, vol. 105, Art. 106058.

    Article  Google Scholar 

  11. Morais, R. H., Santos, L. F. F. M., Silva, A. R. R., and Melicio, R., Dynamics of a Gyrostat Satellite with the Vector of Gyrostatic Moment Tangent to the Orbital Plane, Adv. Space Res., 2022, vol. 69, no. 11, pp. 3921–3940.

    Article  Google Scholar 

  12. Iñarrea, M., Lanchares, V., Pascual, A. I., and Elipe, A., On the Stability of a Class of Permanent Rotations of a Heavy Asymmetric Gyrostat, Regul. Chaotic Dyn., 2017, vol. 22, no. 7, pp. 824–839.

    Article  MathSciNet  MATH  Google Scholar 

  13. Iñarrea, M., Lanchares, V., Pascual, A. I., and Elipe, A., Stability of the Permanent Rotations of an Asymmetric Gyrostat in a Uniform Newtonian Field, Appl. Math. Comput., 2017, vol. 293, no. 15, pp. 404–415.

    Article  MathSciNet  MATH  Google Scholar 

  14. Pascal, M., Attitude Equilibria of Dual Spin Satellites Subjected to Gravitational Torques of \(n\) Bodies, Celest. Mech. Dyn. Astron., 1985, vol. 36, no. 4, pp. 319–347.

    Article  MATH  Google Scholar 

  15. Tsogas, V., Kalvouridis, T. J., and Mavraganis, A., Equilibrium States of a Gyrostat Satellite in an Annular Configuration of \(N\) Big Bodies, Acta Mech., 2005, vol. 175, pp. 181–195.

    Article  MATH  Google Scholar 

  16. Kalvouridis, T. J., Stationary Solutions of a Small Gyrostat in the Newtonian Field of Two Bodies with Equal Masses, Nonlinear Dyn., 2010, vol. 61, no. 3, pp. 373–381.

    Article  MathSciNet  MATH  Google Scholar 

  17. Meng, Y., Hao, R., and Chen, Q., Attitude Stability Analysis of a Dual-Spin Spacecraft in Halo Orbits, Acta Astronaut., 2014, vol. 99, pp. 318–329.

    Article  Google Scholar 

  18. Cochran, J. E., Shu, P. H., and Rew, S. D., Attitude Motion of Asymmetric Dual-Spin Spacecraft, J. Guid. Control Dyn., 1982, vol. 5, no. 1, pp. 644–657.

    Article  MATH  Google Scholar 

  19. Elipe, A. and Lanchares, V., Exact Solution of a Triaxial Gyrostat with One Rotor, Celest. Mech. Dyn. Astron., 2008, vol. 101, no. 1–2, pp. 49–68.

    Article  MathSciNet  MATH  Google Scholar 

  20. Aslanov, V. S., Integrable Cases in the Dynamics of Axial Gyrostats and Adiabatic Invariants, Nonlinear Dyn., 2012, vol. 68, no. 1–2, pp. 259–273.

    Article  MathSciNet  MATH  Google Scholar 

  21. Doroshin, A. V., Exact Solutions for Angular Motion of Coaxial Bodies and Attitude Dynamics of Gyrostat-Satellites, Int. J. Non-Linear Mech., 2013, vol. 50, pp. 68–74.

    Article  Google Scholar 

  22. Shchetinina, E. K., The Motion of a Symmetric Gyrostat with Two Rotors, J. Appl. Math. Mech., 2016, vol. 80, no. 2, pp. 121–126; see also: Prikl. Mat. Mekh., 2016, vol. 80, no. 2, pp. 168-175.

    Article  MathSciNet  MATH  Google Scholar 

  23. Sazonov, V. V. and Troitskaya, A. V., Periodic Motions of a Gyrostat Satellite with a Large Gyrostatic Moment about the Center of Mass, J. Appl. Math. Mech., 2015, vol. 79, no. 5, pp. 416–425; see also: Prikl. Mat. Mekh., 2015, vol. 79, no. 5, pp. 595-607.

    Article  MathSciNet  MATH  Google Scholar 

  24. Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Moscow: Nauka, 1978 (Russian).

    MATH  Google Scholar 

  25. Markeyev, A. P., A Method for Analytically Representing Area-Preserving Mappings, J. Appl. Math. Mech., 2014, vol. 78, no. 5, pp. 435–444; see also: Prikl. Mat. Mekh., 2014, vol. 78, no. 5, pp. 612-624.

    Article  MathSciNet  MATH  Google Scholar 

  26. Markeyev, A. P., A Constructive Algorithm for the Normalization of a Periodic Hamiltonian, J. Appl. Math. Mech., 2005, vol. 69, no. 3, pp. 323–337; see also: Prikl. Mat. Mekh., 2005, vol. 69, no. 3, pp. 355-371.

    Article  MathSciNet  Google Scholar 

  27. Gustavson, F., On Constructing Formal Integrals of a Hamiltonian System Near an Equilibrium Point, Astron. J., 1966, vol. 71, no. 8, pp. 670–686.

    Article  Google Scholar 

  28. Meyer, K. and Hall, G., Introduction to Hamiltonian Dynamical Systems and the \(N\)-Body Problem, 3rd ed., Appl. Math. Sci., vol. 90, Cham: Springer, 2017.

    Book  Google Scholar 

  29. Moser, J., New Aspects in the Theory of Stability of Hamiltonian Systems, Comm. Pure Appl. Math., 1958, vol. 11, no. 1, pp. 81–114.

    Article  MathSciNet  MATH  Google Scholar 

  30. Siegel, C. L. and Moser, J. K., Lectures on Celestial Mechanics, Grundlehren Math. Wiss., vol. 187, New York: Springer, 1971.

    Book  MATH  Google Scholar 

  31. Arnol’d, V. I., Mathematical Methods of Classical Mechanics, 2nd ed., Grad. Texts in Math., vol. 60, New York: Springer, 1997.

    Google Scholar 

  32. Markeev, A. P., On the Problem of Stability of Equilibrium Positions of Hamiltonian Systems, J. Appl. Math. Mech., 1970, vol. 34, no. 6, pp. 941–948; see also: Prikl. Mat. Mekh., 1970, vol. 34, no. 6, pp. 997-1004.

    Article  MathSciNet  MATH  Google Scholar 

  33. Markeev, A. P., On the Stability of a Nonautonomous Hamiltonian System with Two Degrees of Freedom, J. Appl. Math. Mech., 1969, vol. 33, no. 3, pp. 550–557; see also: Prikl. Mat. Mekh., 1969, vol. 33, no. 3, pp. 563-569.

    Article  MathSciNet  MATH  Google Scholar 

  34. Vidal, C. and dos Santos, F., Stability of Equilibrium Positions of Periodic Hamiltonian Systems under Third and Fourth Order Resonances, Regul. Chaotic Dyn., 2005, vol. 10, no. 1, pp. 95–111.

    Article  MathSciNet  MATH  Google Scholar 

  35. Beletsky, V. V., On Satellite Libration, in Artificial Earth Satellites: Vol. 3, Moscow: Akad. Nauk SSSR, 1959, pp. 13–31 (Russian).

    Google Scholar 

  36. Beletskii, V. V., Motion of an Artificial Satellite about Its Center of Mass, Jerusalem: Israel Program for Scientific Translations, 1966.

    Google Scholar 

  37. Khentov, A. A., On Rotational Motion of a Satellite, Kosmicheskie Issledovaniya, 1984, vol. 22, no. 1, pp. 130–131 (Russian).

    Google Scholar 

  38. Markeev, A. P. and Bardin, B. S., A Planar, Rotational Motion of a Satellite in an Elliptic Orbit, Cosmic Research, 1994, vol. 32, no. 6, pp. 583–589; see also: Kosmicheskie Issledovaniya, 1994, vol. 32, no. 6, pp. 43-49.

    Google Scholar 

  39. Bardin, B. S., Chekina, E. A., and Chekin, A. M., On the Stability of a Planar Resonant Rotation of a Satellite in an Elliptic Orbit, Regul. Chaotic Dyn., 2015, vol. 20, no. 1, pp. 63–73.

    Article  MathSciNet  MATH  Google Scholar 

  40. Bardin, B. S. and Chekina, E. A., On the Stability of Resonant Rotation of a Symmetric Satellite in an Elliptical Orbit, Regul. Chaotic Dyn., 2016, vol. 21, no. 4, pp. 377–389.

    Article  MathSciNet  MATH  Google Scholar 

  41. Celletti, A. and Sidorenko, V., Some Properties of the Dumbbell Satellite Attitude Dynamics, Celest. Mech. Dyn. Astron., 2008, vol. 101, no. 1–2, pp. 105–126.

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhong, X., Zhao, J., Yu, K., and Xu, M., On the Stability of Periodic Motions of a Two-Body System with Flexible Connection in an Elliptical Orbit, Nonlinear Dyn., 2021, vol. 104, no. 4, pp. 3479–3496.

    Article  Google Scholar 

  43. Lyapunov, A. M., The General Problem of the Stability of Motion, Int. J. Control, 1992, vol. 55, no. 3, pp. 531–773.

    Article  MathSciNet  Google Scholar 

  44. dos Santos, F. and Vidal, C., Stability of Equilibrium Solutions of Autonomous and Periodic Hamiltonian Systems in the Case of Multiple Resonances, J. Differ. Equ., 2015, vol. 258, no. 11, pp. 3880–3901.

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the editors and the anonymous referees for their careful reading of our manuscript and for their thorough and insightful review that improved this paper. The authors would also like to thank Professor Liu Yanzhu (Department of Engineering Mechanics, Shanghai Jiao Tong University) for his help in the revision of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue Zhong, Jie Zhao, Kaiping Yu or Minqiang Xu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

MSC2010

34C20, 34C25, 70E17, 70E50

APPENDIX

The coefficient \(w_{{l_{1}}{l_{2}}{l_{3}}{l_{1}}{l_{2}}{l_{3}}}\) in Eqs. (4.52) and (4.54) includes \({w_{200200}}\), \({w_{020020}}\), \({w_{002002}}\), \({w_{110110}}\), \({w_{101101}}\) and \({w_{011011}}\), and can be computed by the following formulae:

$$\displaystyle{w_{200200}}=f_{200200}^{*}+\frac{1}{8}\left({4{c_{200100}}+3c_{200100300000}^{-}+{c_{110100}}+c_{200010200010}^{-}+{c_{101100}}+c_{200001200001}^{-}}\right)$$
$$\displaystyle+\frac{1}{{16}}\left[{9\cot\left({3\pi{\sigma_{1}}}\right)\tilde{c}_{300000}^{+}+3\cot\left({\pi{\sigma_{1}}}\right)\tilde{c}_{200100}^{+}+\cot\left({2\pi{\sigma_{1}}+\pi{\sigma_{2}}}\right)\tilde{c}_{210000}^{+}}\right.$$
$$\displaystyle+\cot\left({\pi{\sigma_{2}}}\right)\tilde{c}_{110100}^{+}-\cot\left({2\pi{\sigma_{1}}-\pi{\sigma_{2}}}\right)\tilde{c}_{200010}^{+}+\cot\left({2\pi{\sigma_{1}}+\pi{\sigma_{3}}}\right)\tilde{c}_{201000}^{+}$$
$$\displaystyle\left.{+\cot\left({\pi{\sigma_{3}}}\right)\tilde{c}_{101100}^{+}-\cot\left({2\pi{\sigma_{1}}-\pi{\sigma_{3}}}\right)\tilde{c}_{200001}^{+}}\right],$$
$$\displaystyle{w_{110110}}=f_{110110}^{*}+\frac{1}{4}\left({c_{110100210000}^{-}+c_{110010120000}^{-}+c_{110100200010}^{+}+c_{020100110010}^{+}+c_{110010200100}^{+}}\right.$$
$$\displaystyle\left.{+c_{020010110100}^{+}}\right)+\frac{1}{8}\left({c_{101100011010}^{+}+c_{110001111000}^{-}+c_{011100101010}^{+}}\right)$$
$$\displaystyle+\frac{1}{4}\left[{\cot\left({\pi{\sigma_{1}}+2\pi{\sigma_{2}}}\right)\tilde{c}_{120000}^{+}+\cot\left({2\pi{\sigma_{1}}+\pi{\sigma_{2}}}\right)\tilde{c}_{210000}^{+}+\cot\left({2\pi{\sigma_{1}}-\pi{\sigma_{2}}}\right)\tilde{c}_{200010}^{+}}\right.$$
$$\displaystyle\left.{-\cot\left({\pi{\sigma_{1}}-2\pi{\sigma_{2}}}\right)\tilde{c}_{100020}^{+}+\cot\left({\pi{\sigma_{1}}}\right)\hat{c}_{200100110010}^{+}+\cot\left({\pi{\sigma_{2}}}\right)\hat{c}_{110100020010}^{+}}\right]$$
$$\displaystyle+\frac{1}{{16}}\left[{2\cot\left({\pi{\sigma_{3}}}\right)\hat{c}_{101100011010}^{+}+\cot\left({\pi{\sigma_{1}}+\pi{\sigma_{2}}+\pi{\sigma_{3}}}\right)\tilde{c}_{111000}^{+}}\right.$$
$$\displaystyle-\cot\left({\pi{\sigma_{1}}+\pi{\sigma_{2}}-\pi{\sigma_{3}}}\right)\tilde{c}_{110001}^{+}+\cot\left({\pi{\sigma_{1}}-\pi{\sigma_{2}}+\pi{\sigma_{3}}}\right)\tilde{c}_{101010}^{+}$$
$$\displaystyle\left.{-\cot\left({\pi{\sigma_{1}}-\pi{\sigma_{2}}-\pi{\sigma_{3}}}\right)\tilde{c}_{011100}^{+}}\right].$$

The coefficients \({\mu_{{k_{1}}{k_{2}}{k_{3}}000}}\) and \({\nu_{{k_{1}}{k_{2}}{k_{3}}000}}\) shown in Eq. (4.56) include \(\mu_{400000}\), \(\nu_{400000}\), \(\mu_{040000}\), \(\nu_{040000}\), \(\mu_{004000}\), \(\nu_{004000}\), \(\mu_{310000}\), \(\nu_{310000}\), \(\mu_{301000}\), \(\nu_{301000}\), \(\mu_{031000}\), \(\nu_{031000}\), \(\mu_{130000}\), \(\nu_{130000}\), \(\mu_{103000}\), \(\nu_{103000}\), \(\mu_{013000}\), \(\nu_{013000}\), \(\mu_{220000}\), \(\nu_{220000}\), \(\mu_{202000}\), \(\nu_{202000}\), \(\mu_{022000}\), \(\nu_{022000}\), \(\mu_{211000}\), \(\nu_{211000}\), \(\mu_{121000}\), \(\nu_{121000}\), \(\mu_{112000}\) and \(\nu_{112000}\), and can be computed by the following formulae:

$$\displaystyle{\mu_{400000}}=\frac{1}{4}{a_{400000}}+\frac{1}{{16}}\left[{9{c_{300000}}-{c_{200100}}+{c_{210000}}+{c_{201000}}-{c_{200010}}-{c_{200001}}}\right.$$
$$\displaystyle\left.{-3\cot\left({\pi{\sigma_{1}}}\right)\hat{c}_{300000200100}^{-}-\cot\left({2\pi{\sigma_{1}}-\pi{\sigma_{2}}}\right)\hat{c}_{210000200010}^{-}-\cot\left({2\pi{\sigma_{1}}-\pi{\sigma_{3}}}\right)\hat{c}_{201000200001}^{-}}\right],$$
$$\displaystyle{\nu_{400000}}=-\frac{1}{4}{b_{400000}}+\frac{1}{{32}}\left[{9\tilde{c}_{300000}^{-}-\tilde{c}_{200100}^{-}+\tilde{c}_{210000}^{-}+\tilde{c}_{201000}^{-}-\tilde{c}_{200010}^{-}-\tilde{c}_{200001}^{-}}\right.$$
$$\displaystyle+6\cot\left({\pi{\sigma_{1}}}\right)c_{200100300000}^{+}+2\cot\left({2\pi{\sigma_{1}}-\pi{\sigma_{2}}}\right)c_{200010210000}^{+}$$
$$\displaystyle\left.{+2\cot\left({2\pi{\sigma_{1}}-\pi{\sigma_{3}}}\right)c_{200001201000}^{+}}\right],$$
$$\displaystyle{\mu_{310000}}=\frac{1}{4}{a_{310000}}+\frac{1}{{16}}\left[{6c_{210000300000}^{+}+2c_{120000210000}^{+}-c_{200100110100}^{+}-c_{110010200010}^{+}+c_{201000111000}^{+}}\right.$$
$$\displaystyle-c_{200001110001}^{+}-3\cot\left({\pi{\sigma_{2}}}\right)\hat{c}_{300000110100}^{-}-\cot\left({\pi{\sigma_{1}}}\right)\left({2\hat{c}_{210000200100}^{-}+\hat{c}_{210000110010}^{-}}\right)$$
$$\displaystyle-2\cot\left({2\pi{\sigma_{1}}-\pi{\sigma_{2}}}\right)\hat{c}_{120000200010}^{-}-\cot\left({\pi{\sigma_{1}}+\pi{\sigma_{2}}-\pi{\sigma_{3}}}\right)\hat{c}_{201000110001}^{-}$$
$$\displaystyle\left.{-\cot\left({2\pi{\sigma_{1}}-\pi{\sigma_{3}}}\right)\hat{c}_{200001111000}^{-}}\right],$$
$$\displaystyle{\nu_{310000}}=-\frac{1}{4}{b_{310000}}+\frac{1}{{16}}\left[{6\hat{c}_{210000300000}^{-}+2\hat{c}_{120000210000}^{-}-\hat{c}_{200100110100}^{-}-\hat{c}_{110010200010}^{-}+\hat{c}_{201000111000}^{-}}\right.$$
$$\displaystyle-\hat{c}_{200001110001}^{-}+3\cot\left({\pi{\sigma_{2}}}\right)c_{300000110100}^{+}+\cot\left({\pi{\sigma_{1}}}\right)\left({2c_{210000200100}^{+}+c_{210000110010}^{+}}\right)$$
$$\displaystyle+2\cot\left({2\pi{\sigma_{1}}-\pi{\sigma_{2}}}\right)c_{200010120000}^{+}+\cot\left({\pi{\sigma_{1}}+\pi{\sigma_{2}}-\pi{\sigma_{3}}}\right)c_{201000110001}^{+}$$
$$\displaystyle\left.{+\cot\left({2\pi{\sigma_{1}}-\pi{\sigma_{3}}}\right)c_{200001111000}^{+}}\right],$$
$$\displaystyle{\mu_{220000}}=\frac{1}{4}{a_{220000}}+\frac{1}{{16}}\left[{4\left({{c_{210000}}+{c_{120000}}}\right)+3\left({c_{120000300000}^{+}+c_{030000210000}^{+}}\right)-{c_{110100}}-{c_{110010}}}\right.$$
$$\displaystyle+c_{201000021000}^{+}-c_{200001020001}^{+}+{c_{111000}}-{c_{110001}}-c_{200100020100}^{+}-c_{200010020010}^{+}$$
$$\displaystyle-\cot\left({\pi{\sigma_{1}}}\right)\left({2\hat{c}_{110010120000}^{-}+\hat{c}_{120000200100}^{-}}\right)-\cot\left({\pi{\sigma_{2}}}\right)\left({2\hat{c}_{110100210000}^{-}+\hat{c}_{210000020010}^{-}}\right)$$
$$\displaystyle-3\cot\left({2\pi{\sigma_{1}}-\pi{\sigma_{2}}}\right)\hat{c}_{030000200010}^{-}-3\cot\left({2\pi{\sigma_{2}}-\pi{\sigma_{1}}}\right)\hat{c}_{300000020100}^{-}$$
$$\displaystyle-\left({\cot\left({2\pi{\sigma_{1}}-\pi{\sigma_{3}}}\right)+\cot\left({2\pi{\sigma_{\rm{2}}}-\pi{\sigma_{3}}}\right)}\right)\hat{c}_{200001020001}^{-}$$
$$\displaystyle\left.{-\cot\left({\pi{\sigma_{1}}+\pi{\sigma_{2}}-\pi{\sigma_{3}}}\right)\hat{c}_{110001111000}^{-}}\right],$$
$$\displaystyle{v_{220000}}=-\frac{1}{4}{b_{220000}}+\frac{1}{{32}}\left[{6\left({\hat{c}_{120000300000}^{-}+\hat{c}_{030000210000}^{-}}\right)+4\left({\tilde{c}_{210000}^{-}+\tilde{c}_{120000}^{-}}\right)-\tilde{c}_{110100}^{-}-\tilde{c}_{110010}^{-}}\right.$$
$$\displaystyle-2\left({\hat{c}_{200100020100}^{-}+\hat{c}_{020020200010}^{-}}\right)+2\left({\hat{c}_{201000021000}^{-}-\hat{c}_{200001020001}^{-}}\right)+\tilde{c}_{111000}^{-}-\tilde{c}_{110001}^{-}$$
$$\displaystyle+2\cot\left({\pi{\sigma_{1}}}\right)\left({2c_{110010120000}^{+}+c_{120000200100}^{+}}\right)+2\cot\left({\pi{\sigma_{2}}}\right)\left({2c_{110010012000}^{+}+c_{210000020010}^{+}}\right)$$
$$\displaystyle+6\cot\left({2\pi{\sigma_{1}}-\pi{\sigma_{2}}}\right)c_{030000200010}^{+}+2\cot\left({\pi{\sigma_{1}}+\pi{\sigma_{2}}-\pi{\sigma_{3}}}\right)c_{110001111000}^{+}$$
$$\displaystyle\left.{+6\cot\left({2\pi{\sigma_{2}}-\pi{\sigma_{1}}}\right)c_{300000020100}^{+}+2\left({\cot\left({2\pi{\sigma_{1}}-\pi{\sigma_{3}}}\right)+\cot\left({2\pi{\sigma_{2}}-\pi{\sigma_{3}}}\right)}\right)c_{200001020001}^{+}}\right],$$
$$\displaystyle{\mu_{211000}}=\frac{1}{4}{a_{211000}}+\frac{1}{{16}}\left[{4c_{210000201000}^{+}+3c_{300000111000}^{+}-c_{110100101100}^{+}-c_{110010110010}^{+}-c_{101001110001}^{+}}\right.$$
$$\displaystyle-c_{200010011010}^{+}+2\left({c_{300000111000}^{+}+c_{201000012000}^{+}+c_{120000111000}^{+}+c_{102000111000}^{+}}\right)$$
$$\displaystyle-c_{200001011001}^{+}-c_{200100011100}^{+}-\cot\left({\pi{\sigma_{1}}}\right)\left({\hat{c}_{200100111000}^{-}+\hat{c}_{111000110010}^{-}+\hat{c}_{111000101001}^{-}}\right)$$
$$\displaystyle-\cot\left({\pi{\sigma_{2}}}\right)\left({2\hat{c}_{201000110100}^{-}+\hat{c}_{201000011001}^{-}}\right)-\cot\left({\pi{\sigma_{3}}}\right)\left({2\hat{c}_{210000101100}^{-}+\hat{c}_{210000011010}^{-}}\right)$$
$$\displaystyle-2\cot\left({2\pi{\sigma_{1}}-\pi{\sigma_{2}}}\right)\hat{c}_{200010021000}^{-}-2\cot\left({2\pi{\sigma_{1}}-\pi{\sigma_{3}}}\right)\hat{c}_{200001012000}^{-}$$
$$\displaystyle-3\cot\left({\pi{\sigma_{2}}+\pi{\sigma_{3}}-\pi{\sigma_{1}}}\right)\hat{c}_{300000011100}^{-}-2\cot\left({\pi{\sigma_{1}}+\pi{\sigma_{3}}-\pi{\sigma_{2}}}\right)\hat{c}_{120000110010}^{-}$$
$$\displaystyle\left.{-2\cot\left({\pi{\sigma_{1}}+\pi{\sigma_{2}}-\pi{\sigma_{3}}}\right)\hat{c}_{102000110001}^{-}}\right],$$
$$\displaystyle{v_{211000}}=-\frac{1}{4}{b_{211000}}\!+\!\frac{1}{{16}}\left[{4\left({\hat{c}_{210000201000}^{-}\!-\!\hat{c}_{110100101100}^{-}}\right)\!+\!3\hat{c}_{300000111000}^{-}-\hat{c}_{200100211100}^{-}-\hat{c}_{200010011010}^{-}}\right.$$
$$\displaystyle-\hat{c}_{200001011001}^{-}+2\left({\hat{c}_{210000021000}^{-}+\hat{c}_{201000012000}^{-}+\hat{c}_{120000111000}^{-}+\hat{c}_{102000111000}^{-}}\right)$$
$$\displaystyle-\hat{c}_{110010101010}^{-}-\hat{c}_{101001110001}^{-}+\cot\left({\pi{\sigma_{1}}}\right)\left({c_{200100111000}^{+}+c_{111000110010}^{+}+c_{111000101001}^{+}}\right)$$
$$\displaystyle+\cot\left({\pi{\sigma_{2}}}\right)\left({2c_{201000110100}^{+}+c_{201000011001}^{+}}\right)+\cot\left({\pi{\sigma_{3}}}\right)\left({2c_{110000101100}^{+}+c_{210000011010}^{+}}\right)$$
$$\displaystyle+2\cot\left({2\pi{\sigma_{1}}-\pi{\sigma_{2}}}\right)c_{200010021000}^{+}+2\cot\left({2\pi{\sigma_{1}}-\pi{\sigma_{3}}}\right)c_{200001012000}^{+}$$
$$\displaystyle+3\cot\left({\pi{\sigma_{2}}+\pi{\sigma_{3}}-\pi{\sigma_{1}}}\right)c_{300000011100}^{+}+2\cot\left({\pi{\sigma_{1}}+\pi{\sigma_{3}}-\pi{\sigma_{2}}}\right)c_{120000101010}^{+}$$
$$\displaystyle\left.{+2\cot\left({\pi{\sigma_{1}}+\pi{\sigma_{2}}-\pi{\sigma_{3}}}\right)c_{102000110001}^{+}}\right],$$
where
$$\displaystyle{c_{{\nu_{1}}{\nu_{2}}{\nu_{3}}{\mu_{1}}{\mu_{2}}{\mu_{3}}}}={a_{{\nu_{1}}{\nu_{2}}{\nu_{3}}{\mu_{1}}{\mu_{2}}{\mu_{3}}}}{b_{{\nu_{1}}{\nu_{2}}{\nu_{3}}{\mu_{1}}{\mu_{2}}{\mu_{3}}}},\quad\tilde{c}_{{\nu_{1}}{\nu_{2}}{\nu_{3}}{\mu_{1}}{\mu_{2}}{\mu_{3}}}^{\pm}=a_{{\nu_{1}}{\nu_{2}}{\nu_{3}}{\mu_{1}}{\mu_{2}}{\mu_{3}}}^{2}\pm b_{{\nu_{1}}{\nu_{2}}{\nu_{3}}{\mu_{1}}{\mu_{2}}{\mu_{3}}}^{2},$$
$$\displaystyle c_{{m_{1}}{m_{2}}{m_{3}}{n_{1}}{n_{2}}{n_{3}}{r_{1}}{r_{2}}{r_{3}}{s_{1}}{s_{2}}{s_{3}}}^{\pm}={a_{{m_{1}}{m_{2}}{m_{3}}{n_{1}}{n_{2}}{n_{3}}}}{b_{{r_{1}}{r_{2}}{r_{3}}{s_{1}}{s_{2}}{s_{3}}}}\pm{a_{{r_{1}}{r_{2}}{r_{3}}{s_{1}}{s_{2}}{s_{3}}}}{b_{{m_{1}}{m_{2}}{m_{3}}{n_{1}}{n_{2}}{n_{3}}}},$$
$$\displaystyle\hat{c}_{{m_{1}}{m_{2}}{m_{3}}{n_{1}}{n_{2}}{n_{3}}{r_{1}}{r_{2}}{r_{3}}{s_{1}}{s_{2}}{s_{3}}}^{\pm}={a_{{m_{1}}{m_{2}}{m_{3}}{n_{1}}{n_{2}}{n_{3}}}}{a_{{r_{1}}{r_{2}}{r_{3}}{s_{1}}{s_{2}}{s_{3}}}}\pm{b_{{m_{1}}{m_{2}}{m_{3}}{n_{1}}{n_{2}}{n_{3}}}}{b_{{r_{1}}{r_{2}}{r_{3}}{s_{1}}{s_{2}}{s_{3}}}}.$$

In addition, the coefficients \({a_{{\nu_{1}}{\nu_{2}}{\nu_{3}}{\mu_{1}}{\mu_{2}}{\mu_{3}}}}\), \({b_{{\nu_{1}}{\nu_{2}}{\nu_{3}}{\mu_{1}}{\mu_{2}}{\mu_{3}}}}\) in Eq. (4.55), and \(f_{{\nu_{1}}{\nu_{2}}{\nu_{3}}{\mu_{1}}{\mu_{2}}{\mu_{3}}}^{*}\), the coefficient of \(F_{4}^{*}\) in Eq. (4.26), are explicit functions of \({f_{{\nu_{1}}{\nu_{2}}{\nu_{3}}{\mu_{1}}{\mu_{2}}{\mu_{3}}}}\), which are the coefficients of generating function \(F_{k}\) shown in Eq. (4.21). They can be represented as

$$\displaystyle{a_{300000}}={f_{300000}}-{f_{100200}},\quad{b_{300000}}={f_{200100}}-{f_{000300}},$$
$$\displaystyle{a_{200100}}={f_{100200}}+3{f_{300000}},\quad{b_{200100}}={f_{200100}}+3{f_{000300}},$$
$$\displaystyle{a_{210000}}={f_{210000}}-{f_{100110}}-{f_{010200}},\quad{b_{210000}}={f_{200010}}+{f_{110100}}-{f_{000210}},$$
$$\displaystyle{a_{200010}}={f_{210000}}+{f_{100110}}-{f_{010200}},\quad{b_{200010}}={f_{000210}}+{f_{110100}}-{f_{200010}},$$
$$\displaystyle{a_{110100}}=2{f_{210000}}+2{f_{010200}},\quad{b_{110100}}=2{f_{200010}}+2{f_{000210}},$$
$$\displaystyle{a_{111000}}={f_{111000}}-{f_{100011}}-{f_{010101}}-{f_{001110}},\quad{b_{111000}}={f_{110001}}+{f_{101010}}+{f_{011100}}-{f_{000111}},$$
$$\displaystyle{a_{110001}}={f_{111000}}+{f_{100011}}+{f_{010101}}-{f_{001110}},\quad{b_{110001}}=-{f_{110001}}+{f_{101010}}+{f_{011100}}+{f_{000111}},$$
$$\displaystyle{a_{011100}}={f_{111000}}-{f_{100011}}+{f_{010101}}+{f_{001110}},\quad{b_{011100}}={f_{110001}}+{f_{101010}}-{f_{011100}}+{f_{000111}},$$
$$\displaystyle{a_{400000}}={f_{200200}}-{f_{400000}}-{f_{000400}},\quad{b_{400000}}={f_{100300}}-{f_{300100}},$$
$$\displaystyle{a_{310000}}={f_{200110}}+{f_{110200}}-{f_{310000}}-{f_{000310}},\quad{b_{310000}}={f_{100210}}+{f_{010300}}-{f_{210100}}-{f_{300010}},$$
$$\displaystyle{a_{130000}}={f_{020110}}+{f_{110020}}-{f_{130000}}-{f_{000130}},\quad{b_{13000}}={f_{010120}}+{f_{100030}}-{f_{120010}}-{f_{030100}},$$
$$\displaystyle{a_{220000}}={f_{110110}}-{f_{220000}}+{f_{200020}}-{f_{000220}}+{f_{020200}},$$
$$\displaystyle{b_{220000}}={f_{100120}}-{f_{120100}}+{f_{010210}}-{f_{210010}},$$
$$\displaystyle{a_{211000}}={f_{200011}}+{f_{011200}}+{f_{110101}}+{f_{101110}}-{f_{211000}}-{f_{000211}},$$
$$\displaystyle{b_{211000}}={f_{010201}}+{f_{001210}}+{f_{100111}}-{f_{111100}}-{f_{201010}}-{f_{210001}},$$
and
$$f_{200200}^{*}=-\frac{1}{2}\left({3{f_{400000}}+{f_{200200}}+3{f_{000400}}}\right),\quad f_{110110}^{*}=-{f_{220000}}-{f_{200020}}-{f_{020200}}-{f_{000220}}.$$

For the expressions of other coefficients, just replace the subscripts of the corresponding coefficients in the formulae given above. For example, the expression of \(a_{030000}\) is obtained by exchanging the first and second subscripts of each term in the expression of \(a_{300000}\). The same is true for other coefficients.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, X., Zhao, J., Yu, K. et al. Stability Analysis of Resonant Rotation of a Gyrostat in an Elliptic Orbit Under Third-and Fourth-Order Resonances. Regul. Chaot. Dyn. 28, 162–190 (2023). https://doi.org/10.1134/S156035472302003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S156035472302003X

Keywords

Navigation