Skip to main content
Log in

Using Couplings to Suppress Chaos and Produce a Population Stabilisation Strategy

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

The chaotic behaviour of dynamical systems can be suppressed if we couple them in some way. In order to do that, the coupling strengths must assume particular values. We illustrate it for the situation that leads to a fixed point behaviour, using two types of couplings corresponding either to a diffusive interaction or a migrative one. For both of them, we present strategies that easily calculate coupling strengths that suppress the chaotic behaviour. We analyse the particular situation of these couplings that consists in a symmetric one and we propose a strategy that provides the suppression of the chaotic evolution of a population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Sun, G.-Q., Zhang, G., and Jin, Zh., Dynamic Behavior of a Discrete Modified Ricker & Beverton – Holt Model, Comput. Math. Appl., 2009, vol. 57, no. 8, pp. 1400–1412.

    Article  MathSciNet  MATH  Google Scholar 

  2. Zambrano, S., Brugioni, S., Allaria, E., Leyva, I., Sanjuán, M. A. F., Meucci, R., and Arecchi, F. T., Numerical and Experimental Exploration of Phase Control of Chaos, Chaos, 2006, vol. 16, no. 1, 013111, 9 pp.

    Article  MATH  Google Scholar 

  3. Harb, A. M., Zaher, A. A., Al-Qaisia, A. A., and Zohdy, M. A., Recursive Backstepping Control of Chaotic Duffing Oscillators, Chaos Solitons Fractals, 2007, vol. 34, no. 2, pp. 639–645.

    Article  MATH  Google Scholar 

  4. Ott, E., Grebogi, C., and Yorke, J. A., Controlling Chaos, Phys. Rev. Lett., 1990, vol. 64, no. 11, pp. 1196–1199.

    Article  MathSciNet  MATH  Google Scholar 

  5. Pyragas, K., Continious Control of Chaos by Self-Controlling Feedback, Phys. Lett. A, 1992, vol. 170, no. 6, pp. 421–428.

    Article  Google Scholar 

  6. Nijmeijer, H. and Berghuis, H., On Lyapunov Control of the Duffing Equation, IEEE Trans. Circuits Systems 1 Fund. Theory Appl., 1995, vol. 42, no. 8, pp. 473–477.

    Article  MathSciNet  MATH  Google Scholar 

  7. di Bernardo, M., An Adaptive Approach to the Control and Synchronization of Continuous-Time Chaotic Systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1996, vol. 6, no. 3, pp. 557–568.

    Article  MathSciNet  MATH  Google Scholar 

  8. Boccaletti, S., Grebogi, C., Lai, Y.-C., Mancini, H., and Maza, D., The Control of Chaos: Theory and Applications, Phys. Rep., 2000, vol. 329, no. 3, pp. 103–197.

    Article  MathSciNet  Google Scholar 

  9. Ge, S. S. and Wang, C., Adaptive Control of Uncertain Chua’s Circuits, IEEE Trans. Circuits Systems 1 Fund. Theory Appl., 2000, vol. 47, no. 9, pp. 1397–1402.

    Article  MathSciNet  MATH  Google Scholar 

  10. Harb, A. M. and Zaher, A. A., Nonlinear Control of Permanent Magnet Stepper Motors, Commun. Nonlinear Sci. Numer. Simul., 2004, vol. 9, no. 4, pp. 443–458.

    Article  MathSciNet  MATH  Google Scholar 

  11. Ahlborn, A. and Parlitz, U., Laser Stabilization with Multiple-Delay Feedback Control, Opt. Lett., 2006, vol. 31, no. 4, pp. 465–467.

    Article  Google Scholar 

  12. Udwadia, F. E. and Raju, N., Dynamics of Coupled Nonlinear Maps and Its Application to Ecological Modeling, Appl. Math. Comput., 1997, vol. 82, no. 2–3, pp. 137–179.

    Article  MathSciNet  MATH  Google Scholar 

  13. Yakubu, A.-A. and Castillo-Chavez, C., Interplay between Local Dynamics and Disperal in Discrete-Time Metapopulation Model, J. Theor. Biol., 2002, vol. 218, no. 3, pp. 273–288.

    Article  Google Scholar 

  14. Huang, Y. and Zou, X., Impact of Dispersion on Dynamics of a Discrete Metapopulation Model, Open Syst. Inf. Dyn., 2007, vol. 14, no. 4, pp. 379–396.

    Article  MathSciNet  MATH  Google Scholar 

  15. Carmona, P. and Franco, D., Impact of Dispersal on the Total Population Size, Constancy and Persistence of Two-Patch Spatially-Separated Populations, Math. Model. Nat. Phenom., 2015, vol. 10, no. 2, pp. 45–55.

    Article  MathSciNet  MATH  Google Scholar 

  16. Bajo, I. and Ruiz-Herrera, A., A Quantitative Approach to the Stabilising Role of Dispersal in Metapopulations, Math. Biosci., 2017, vol. 290, pp. 49–55.

    Article  MathSciNet  MATH  Google Scholar 

  17. Sun, B. and Zhao, Y., Impact of Dispersion on Dynamics of a Discrete Metapopulation Model, J. Comput. Appl. Math., 2007, vol. 200, no. 1, pp. 266–275.

    Article  MathSciNet  MATH  Google Scholar 

  18. Sarmah, H. K. and Paul, R., Chaotic Behaviour in the Coupled Logistic Map, Int. J. Adv. Sci. Tech. Res., 2012, vol. 6, no. 2, pp. 337–357.

    Google Scholar 

  19. Milnor, J., On the Concept of Attractor, Commun. Math. Phys., 1985, vol. 99, no. 2, pp. 177–195.

    Article  MathSciNet  MATH  Google Scholar 

  20. May, R., Simple Mathematical Models with Very Complicated Dynamics, Nature, 1976, vol. 261, no. 5560, pp. 459–467.

    Article  MATH  Google Scholar 

  21. da Costa, D. R., Medrano-T, R. O., and Leonel, E. D., Route to Chaos and Some Properties in the Boundary Crisis of a Generalized Logistic Mapping, Phys. A, 2017, vol. 486, pp. 674–680.

    Article  MathSciNet  MATH  Google Scholar 

  22. Mira, Ch., Chaotic Dynamics: From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism, Singapore: World Sci., 1987.

    Book  MATH  Google Scholar 

  23. Briden, W. and Zhang, S., Stability of Solutions of Generalized Logistic Difference Equations, Period. Math. Hungar., 1994, vol. 29, no. 1, pp. 81–87.

    Article  MathSciNet  MATH  Google Scholar 

  24. Hernández-Bermejo, B. and Brenig, L., Some Global Results on Quasipolynomial Discrete Systems, Nonlinear Anal. Real World Appl., 2006, vol. 7, no. 3, pp. 486–496.

    Article  MathSciNet  MATH  Google Scholar 

  25. Udwadia, F. E. and Raju, N., Some Global Properties of a Pair of Coupled Maps: Quasi-Symmetry, Periodicity, and Synchronicity, Phys. D, 1998, vol. 111, no. 1–4, pp. 16–26.

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank Firdaus Udwadia for his comments, which enabled us to improve our work.

Funding

This research was partially sponsored with national funds through the Fundação Nacional para a Ciência e Tecnologia, Portugal-FCT, under projects UIDB/04674/2020 (CIMA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luís M. Lopes, Clara Grácio, Sara Fernandes or Danièle Fournier-Prunaret.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

MSC2010

37E05

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, L.M., Grácio, C., Fernandes, S. et al. Using Couplings to Suppress Chaos and Produce a Population Stabilisation Strategy. Regul. Chaot. Dyn. 28, 191–206 (2023). https://doi.org/10.1134/S1560354723020041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354723020041

Keywords

Navigation