Skip to main content
Log in

Outlining the Slip Effects on MHD Casson Nanofluid Flow over a Permeable Stretching Sheet in the Existence of Variable Wall Thickness

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

An analysis has been carried out to explore the impact of slip mechanism on MHD flow of Casson nanofluid over a permeable stretching sheet. Besides, we documented the flow aspects which include thermal radiation, variable wall thickness and chemical reaction. We alter the partial differential flow-related conditions into nonlinear ordinary ones employing the similarity transformation approach. Then, using a popular semi-analytical technique known as the Homotopy Analysis Method (HAM), we were able to untangle them. This method yields to power series solutions to nonlinear differential equations. To illustrate the impact of the velocity, temperature and concentration profiles, a parametric research has been done using tables and diagrams. In the limiting sense, the numerical results of our methodology are in great association with the outcomes of previous research. Finally, it is noted that higher values of the velocity slip constraint cause an enhancement in fluid velocity, while escalating values of the thermal slip constraint cause a decline in temperature distribution. Additionally, owing to an escalate in velocity power index, together the temperature and nanoparticle size fraction profiles considerably accelerate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

REFERENCES

  1. Choi, S.U.S., Enhancing Thermal Conductivity of Fluids with Nanoparticles, Procs. of the ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, USA, 1995, pp. 99–105.

  2. Bahiraei, M., Monavari, A., and Moayedi, H., Second Law Assessment of Nanofluid Flow in a Channel Fitted with Conical Ribs for Utilization in Solar Thermal Applications: Effect of Nanoparticle Shape, Int. J. Heat Mass Transfer, 2020, vol. 151, p. 119387.

    Article  Google Scholar 

  3. Prasannakumara, B.C., Numerical Simulation of Heat Transport in Maxwell Nanofluid Flow over a Stretching Sheet Considering Magnetic Dipole Effect, Partial Diff. Eqs. Appl. Math., 2021, vol. 4, p. 100064.

    Article  Google Scholar 

  4. Sreedevi, P., Sudarsan Reddy, P., and Chamkha, A., Heat and Mass Transfer Analysis of Unsteady Hybrid Nanofluid Flow over a Stretching Sheet with Thermal Radiation, SN Appl. Sci., 2020, vol. 2, p. 1222.

    Article  Google Scholar 

  5. Ali Khan, S., Nie, Y., and Ali, B., Multiple Slip Effects on Magnetohydrodynamic Axisymmetric Buoyant Nanofluid Flow above a Stretching Sheet with Radiation and Chemical Reaction, Symmetry, 2019, vol. 11, no. 9, p. 1171.

    Article  ADS  Google Scholar 

  6. Sharma, R., Hussian, S.M., Raju, C.S.K., Seth, G.S., and Chamkha, A.J., Study of Grapheme Maxwell Nanofluid Flow past a Linearly Stretched Sheet: A Numerical and Statistical Approach, Chinese J. Phys., 2020, vol. 68, pp. 671–683.

    Article  ADS  MathSciNet  Google Scholar 

  7. Ibrahim, S.M., Lorenzini, G., Vijaya Kumar, P., and Raju, C.S.K., Influence of Chemical Reaction and Heat Source on Dissipative MHD Mixed Convection Flow of a Casson Nanofluid over a Nonlinear Permeable Stretching Sheet, Int. J. Heat Mass Transfer, 2017, vol. 111, pp. 346–355.

    Article  Google Scholar 

  8. Raju, C.S.K., Sanjeevi, P., Raju, M.C., Ibrahim, S.M., Lorenzini, G., and Lorenzini, E., The Flow of Magnetohydrodynamic Maxwell Nanofluid over a Cylinder with Cattaneo–Christov Heat Flux Model, Cont. Mech. Thermodyn., 2017, vol. 29, pp. 1347–1363.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Makinde, O.D., Mabood, F., and Ibrahim, S.M., Chemically Reacting on MHD Boundary-Layer Flow of Nanofluids over a Non-Linear Stretching Sheet with Heat Source/Sink and Thermal Radiation, Thermal Sci., 2018, vol. 22, no. 1B, pp. 495–506.

    Article  Google Scholar 

  10. Acharya, N., Das, K., and Kundu, P.K., Ramification of Variable Thickness on MHD TiO2 and Ag Nanofluid Flow over a Slendering Stretching Sheet Using NDM, Eur. Phys. J. Plus, 2016, vol. 131, pp. 303–318.

    Article  ADS  Google Scholar 

  11. Gupta, S., Kumar, D., and Sing, J., Analytical Study for MHD Flow of Williamson Nanofluid with the Effects of Variable Thickness, Nonlinear Thermal Radiation and Improved Fourier’s and Fick’s Laws, SN Appl. Sci., 2020, vol. 2, pp. 438–449.

    Article  Google Scholar 

  12. PunithGowda, R.J., Naveen Kumar, R., Prasannakumara, B.C., Nagaraja, B., and Gireesha, B.J., Exploring Magnetic Dipole Contribution on Ferromagnetic Nanofluid Flow over a Stretching Sheet: An Application of Stefan Blowing, J. Molecular Liq., 2021, vol. 335, p. 116215.

    Article  Google Scholar 

  13. Shahid, A., Huang, H., Mubashir Bhatti, M., Zhang, L., and Ellahi, R., Numerical Investigation on the Swimming of Gyrotactic Microorganisms in Nanofluids through Porous Medium over a Stretched Surface, Math., 2020, vol. 8, no. 3, pp. 380–397.

    Article  Google Scholar 

  14. Saleh, B., Madhukesh, J.K., Varun Kumar, R.S., Afzal, A., Abdelrhman, Y., Aly, A.A., and PunithGowda, R.J., Aspects of Magnetic Dipole and Heat Source/Sink on the Maxwell Hybrid Nanofluid Flow over a Stretching Sheet, Procs. of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2022; DOI: 10.1177/09544089211056243 (in press).

  15. Sudarsana Reddy, P. and Sreedevi, P., Impact of Chemical Reaction and Double Stratification on Heat and Mass Transfer Characteristics of Nanofluid Flow over Porous Stretching Sheet with Thermal Radiation, Int. J. Amb. Energy, 2019, vol. 43, no. 1, pp. 1626–1636.

    Article  Google Scholar 

  16. Khan, M.S., Karim, I., Islam, M.S., and Wahiduzzaman, M., MHD Boundary Layer Radiative, Heat Generating and Chemical Reacting Flow past a Wedge Moving in a Nanofluid, Nano Converg., 2014, vol. 1, pp. 20–28.

    Article  Google Scholar 

  17. Rasheed, H.U., Bonyah, E., Gouadria, S., Khan, W., Alshehri, A., and Khan, R., Analytical Assessment of MHD Flow of Nanoliquid Subject to Thermal Radiation and Brownian Effect, J. Nanomat., 2022, vol. 2022, p. 2680489.

    Article  Google Scholar 

  18. Suneetha, K., Ibrahim, S.M., Vijaya Kumar P., and Jyothsna, K., Linear Thermal Radiation Effects on MHD Viscoelastic Fluid Flow through Porous Moving Plate with First Order Chemical Reaction, Variable Temperature and Concentration, J. Comput. Appl. Res. Mech. Eng., 2021, vol. 10, no. 2, pp. 497–509.

    Google Scholar 

  19. Suneetha, K., Ibrahim, S.M., Ramana Reddy, G.V., and Vijaya Kumar, P., Analytical Study of Induced Magnetic Field and Heat Source on Chemically Radiative MHD Convective Flow from a Vertical Surface, J. Comput. Appl. Res. Mech. Eng., 2021, vol. 11, no. 1, pp. 165–176.

    Google Scholar 

  20. Ibrahim, S.M., Kumar, P.V., Lorenzini, G., and Lorenzini, E., Influence of Joule Heating and Heat Source on Radiative MHD Flow over a Stretching Porous Sheet with Power-Law Heat Flux, J. Eng. Therm., 2019, vol. 28, no. 3, pp. 1–13.

    Article  Google Scholar 

  21. Vinod Kumar, G., Varma, S.V.K., and Kumar, R.V.M.S.S.K., Unsteady Three-Dimensional MHD Nanofluid Flow over a Stretching Sheet with Variable Wall Thickness and Slip Effects, Int. J. Appl. Mech. Eng., 2019, vol. 24, no. 3, pp. 709–724.

    Article  ADS  Google Scholar 

  22. Sudipta, G. and Swati, M., Effects of Slip on Cu-Water or Fe3O4-Water Nanofluid Flow over an Exponentially Stretched Sheet, Pramana:-J. Phys., 2019, vol. 92, no. 6, p. 1754.

    Google Scholar 

  23. Samad Khan, A., Xu, H.Y., and Khan, W., Magnetohydrodynamic Hybrid Nanofluid Flow past an Exponentially Stretching Sheet with Slip Conditions, Math., 2021, vol. 9, no. 24, p. 3291.

    Article  Google Scholar 

  24. VenkataRamudu, A.C., Anantha Kumar, K., Sugunamma, V., and Sandeep, N., Heat and Mass Transfer in MHD Casson Nanofluid Flow past a Stretching Sheet with Thermophoresis and Brownian Motion, Heat Transfer, 2020, vol. 49, no. 8, pp. 5020–5037.

    Article  Google Scholar 

  25. Mohamed, R.A., Ahmed, S.E., Aly, A.M., Chamkha, A.J., and Soliman, M.S., MHD Casson Nanofluid Flow over a Stretching Surface Embedded in a Porous Medium: Effects of Thermal Radiation and Slip Conditions, Latin American Appl. Res., 2021, vol. 51, no. 4, pp. 229–239.

    Article  Google Scholar 

  26. Mabood, F., Ibrahim, S.M., Kumar, P.V., and Lorenzini, G., Effects of Slip and Radiation on Convective MHD Casson Nanofluid Flow over a Stretching Sheet Influenced by Variable Viscosity, J. Eng. Therm., 2020, vol. 29, no. 2, pp. 303–315.

    Article  Google Scholar 

  27. Sankar Reddy, T., Roja, P., Ibrahim, S.M., and Lorenzini, G., Thermal Radiation and Viscous Dissipation Effects on (MHD) Bioconvection Stream of Maxwell Nanofluid over a Permeable Vertical Plate due to Gyrotactic Microorganisms, Math. Mod. Eng. Probl., 2022, vol. 9(2), pp. 325–335.

    Google Scholar 

  28. Liao, S.J., Beyond Perturbation: Introduction to Homotopy Analysis Method, Chapman and Hall, CRC Press, Boca Raton, 2011.

    Google Scholar 

  29. Kumar, P.V., Ibrahim, S.M., and Lorenzini, G., Investigation of the Heat Transfer and Flow Characteristics on Hiemenz Flow under the Influence of Heat Source and Thermal Radiation with Hydrodynamic—Thermal Slips Effects, J. Mech. Eng. Res. Develop., 2021, vol. 44, no. 9, pp. 369–383.

    Google Scholar 

  30. Kumar, P.V., Sunitha, Ch., Lorenzini, G., and Ibrahim, S.M., A Study of Thermally Radiant Williamson Nanofluid over an Exponentially Elongating Sheet with Chemical Reaction via Homotopy Analysis Method, CFD Lett., 2022, vol. 14, no. 5, pp. 68–86.

    Article  Google Scholar 

  31. Vijaya Kumar, P., Mohammed Ibrahim, S., and Lorenzini, G., Thermal Radiation and Heat Source Effects on MHD Non-Newtonian Fluid Flow over a Slendering Stretching Sheet with Cross Diffusion, Defects Diffus. Forum, 2018, vol. 338, pp. 28–38.

    Article  Google Scholar 

  32. Khader, M.M. and Megahed, A.M., Differential Transformation Method for Studying Flow and Heat Transfer due to Stretching Sheet Embedded in Porous Medium with Variable Thickness, Variable Thermal Conductivity, and Thermal Radiation, Appl. Math. Mech., 2014, vol. 35, pp. 1387–1400.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P.V., Sunitha, C., Ibrahim, S.M. et al. Outlining the Slip Effects on MHD Casson Nanofluid Flow over a Permeable Stretching Sheet in the Existence of Variable Wall Thickness. J. Engin. Thermophys. 32, 69–88 (2023). https://doi.org/10.1134/S1810232823010071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232823010071

Navigation