Skip to main content
Log in

Thermophysical and Heat Transfer Characteristics Based on Thermal Response and Thermal Recovery Test of a U-Pipe Borehole Heat Exchanger

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Effective ground thermal properties are the most important parameters in the design of borehole heat exchanger (BHE), which are usually can be obtained by thermal response test (TRT). They’re often vary with depth and influenced by heat injection. This paper presents a method combining TRT and thermal recovery test (TrT) to evaluate the ground thermal properties. The TRT and TrT conducted on a single U-pipe BHE by the TRT rig and two measurement lines each with ten three-wire Pt-100 temperature sensors. Thermal conductivity and borehole thermal resistance at different depths were inferred by the infinite line source model (ILSM) during the TRT while by combining the ILSM with the superposition principle and parameter estimation method during the TrT. Results reveal that, although the heat injection rate varies significantly in the TRT period, the average effective ground thermal conductivity and borehole thermal resistance inferred from the TRT are similar to those inferred from the TrT. However, the results at different depths show great variability and correspond to groundwater and geological information. In addition, TrT results showed that acceptable results (within 5% error) could be obtained for 22 hours in a TrT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

REFERENCES

  1. Guodong Cui, Shufeng Pei, Zhenhua Rui, Bin Dou, Fulong Ning, and Jiaqiang Wang, Whole Process Analysis of Geothermal Exploitation and Power Generation from a Depleted High-Temperature Gas Reservoir by Recycling CO2, Energy, 2021, vol. 217, p. 119340.

    Article  Google Scholar 

  2. Luo, J., Rohn, J., Xiang, W., Bertermann, D., and Blum, P., A Review of Ground Investigations for Ground Source Heat Pump (GSHP) Systems, Energy Build., 2016, vol. 117, pp. 160–175; DOI: 10.1016/ j.enbuild.2016.02.038

    Article  Google Scholar 

  3. Jung, Y.-J., Kim, H.-J., Choi, B.-E., Jo, J.-H., and Cho, Y.-H., A Study on the Efficiency Improvement of Multi-Geothermal Heat Pump Systems in Korea Using Coefficient of Performance. Energies, 2016, vol. 9; DOI: 10.3390/en9050356

    Article  Google Scholar 

  4. Guodong Cui, Shaoran Ren, Bin Dou, and Fulong Ning, Geothermal Energy Exploitation from Depleted High-Temperature Gas Reservoirs by Recycling CO2: The Superiority and Existing Problems, Geosci. Front., 2020, in press.

  5. Luo, J., Rohn, J., Bayer, M., Priess, A., Wilkmann, L., and Xiang, W., Heating and Cooling Performance Analysis of a Ground Source Heat Pump System in Southern Germany, Geothermics, 2015, vol. 53, pp. 57–66; DOI: 10.1016/j.geothermics.2014.04.004

    Article  ADS  Google Scholar 

  6. Pouloupatis, P.D., Tassou, S.A., Christodoulides, P., and Florides, G.A., Parametric Analysis of the Factors Affecting the Efficiency of Ground Heat Exchangers and Design Application Aspects in Cyprus, Renew. Energy, 2017, vol. 103, p. 721–728.

    Article  Google Scholar 

  7. Vélez Márquez, M.I., Raymond, J., Blessent, D., Philippe, M., Simon, N., Bour, O., and Lamarche, L., Distributed Thermal Response Tests Using a Heating Cable and Fiber Optic Temperature Sensing. Energies, 2018, vol. 11, p. 3059; DOI: 10.3390/en11113059

    Article  Google Scholar 

  8. Zarrella, A., Emmi, G., Graci, S., De Carli, M., Cultrera, M., Santa, G., Galgaro, A., Bertermann, D., Müller, J., Pockelé, L., et al., Thermal Response Testing Results of Different Types of Borehole Heat Exchangers: An Analysis and Comparison of Interpretation Methods. Energies, 2017, vol. 10, DOI: 10.3390/en10060801

    Article  Google Scholar 

  9. Wang, C.-L., Li, H., Huang, Z.-J., Lu, Y.-H., Huang, X.-J., and Gan, L., A New Heat Transfer Model for Single U-Pipe Ground Heat Exchanger, Appl. Therm. Eng., 2019, vol. 154, pp. 400–406; DOI: 10.1016/j.applthermaleng.2019.03.115

    Article  Google Scholar 

  10. Kavanaugh, S. and Rafferty, K., Geothermal Heating and Cooling Design of Ground-Source Heat Pump Systems, Atlanta, US: ASHRAE, 2014.

    Google Scholar 

  11. Allan, M. and Kavanaugh, S., Thermal Conductivity of Cementitious Grouts and Impact on Heat Exchanger Length Design for Ground Source Heat Pumps, HVAC&R Res., 1999, vol. 5, pp. 85–96; DOI: 10.1080/10789669.1999.10391226

    Article  Google Scholar 

  12. Gehlin, S., Thermal Response Test: Method Development and Evaluation, Doctoral Dissertation, Lulea University of Technology, Lulea, Sweden, 2002.

  13. Spitler, J.D. and Gehlin, S.E.A., Thermal Response Testing for Ground Source Heat Pump Systems—An Historical Review, Renew. Sust. Energ. Rev., 2015, vol. 50, pp. 1125–1137; DOI: 10.1016/ j.rser.2015.05.061

    Article  Google Scholar 

  14. Zhou, Y., Zhao, L., and Wang, S., Determination and Analysis of Parameters for an In Situ Thermal Response Test, Energy Build., 2017, vol. 149, pp. 151–159; DOI: 10.1016/j.enbuild.2017.05.048

    Article  Google Scholar 

  15. Kelvin, T. Mathematical and Physical Papers, London: Cambridge University Press, 1882.

    Google Scholar 

  16. Raymond, J., Lamarche, L., and Malo, M., Field Demonstration of a First Thermal Response Test with a Low Power Source, Appl. Energy, 2015, vol. 147, pp. 30–39; DOI: 10.1016/j.apenergy.2015.01.117

    Article  Google Scholar 

  17. Raymond, J. and Lamarche, L., Development and Numerical Validation of a Novel Thermal Response Test with a Low Power Source, Geothermics, 2014, vol. 51, pp. 434–444; DOI: 10.1016/ j.geothermics.2014.02.004

    Article  ADS  Google Scholar 

  18. Banks, D., An Introduction to Thermogeology: Ground Source Heating and Cooling, 2nd ed., UK: Wiley, 2012.

    Book  Google Scholar 

  19. Christodoulides, P., Florides, G., and Pouloupatis, P., A Practical Method for Computing the Thermal Properties of a Ground Heat Exchanger, Renew. Energy, 2016, vol. 94, pp. 81–89; DOI: 10.1016/ j.renene.2016.03.035

    Article  Google Scholar 

  20. Yoon, S. and Kim, M.-J., Prediction of Ground Thermal Diffusivity from Thermal Response Tests, Energy Build., 2019, vol. 185, pp. 239–246; DOI: 10.1016/j.enbuild.2018.12.027

    Article  Google Scholar 

  21. Ingersoll, L.R., Adler, F., and Plass, H.J., Theory of Earth Heat Exchangers for the Heat Pump, ASHVE Trans., 1950, vol. 56, pp. 167–188.

    Google Scholar 

  22. Wilke, S., Menberg, K., Steger, H., and Blum, P., Advanced Thermal Response Tests: A Review, Renew. Sust. Energ. Rev., 2019; DOI: 10.1016/j.rser.2019.109575

    Article  Google Scholar 

  23. Acuña, J., and Palm, B., Distributed Thermal Response Tests on Pipe-In-Pipe Borehole Heat Exchangers, Appl. Energy, 2013, vol. 109, pp. 312–320; DOI: 10.1016/j.apenergy.2013.01.024

    Article  Google Scholar 

  24. Fujii, H., Okubo, H., Nishi, K., Itoi, R., Ohyama, K., and Shibata, K., An Improved Thermal Response Test for U-Tube Ground Heat Exchanger Based on Optical Fiber Thermometers, Geothermics, 2009, vol. 38, pp. 399–406; DOI: 10.1016/j.geothermics.2009.06.002

    Article  ADS  Google Scholar 

  25. Acuña, J., Mogensen, P., and Palm, B., Distributed Thermal Response Tests on a Multi-Pipe Coaxial Borehole Heat Exchanger, Hvac&R Res., 2011, vol. 17, pp. 1012–1029.

    Google Scholar 

  26. Pambou, H.C.K., Raymond, J., and Lamarche, L., Improving Thermal Response Tests with Wireline Temperature Logs to Evaluate Ground Thermal Conductivity Profiles and Groundwater Fluxes, Heat Mass Transfer, 2019, vol. 55, pp. 1829–1843; DOI: 10.1007/s00231-018-2532-y

    Article  ADS  Google Scholar 

  27. Loveridge, F., Holmes, G., Powrie, W., and Roberts, T., Thermal Response Testing through the Chalk Aquifer in London, UK, J. Envir. Eng. Geophys., 2013, vol. 12, pp. 307–22.

    Article  Google Scholar 

  28. McDaniel, A., Tinjum, J., Hart, D.J., Lin, Y.-F., Stumpf, A., and Thomas, L., Distributed Thermal Response Test to Analyze Thermal Properties in Heterogeneous Lithology, Geothermics, 2018, vol. 76, pp. 116–124; DOI: 10.1016/j.geothermics.2018.07.003

    Article  ADS  Google Scholar 

  29. Beier, R.A., Removing Variable Heat Rate Effects from Borehole Tests, ASHVE Trans., 2003, vol. 109, pp. 463–474.

    Google Scholar 

  30. Hu, P., Meng, Q., Sun, Q., Zhu, N., and Guan, C., A Method and Case Study of Thermal Response Test with Unstable Heat Rate, Energy Build., 2012, vol. 48, pp. 199–205; DOI: 10.1016/j.enbuild.2012.01.036

    Article  Google Scholar 

  31. Zhang, C., Song, W., Liu, Y., Kong, X., and Wang, Q., Effect of Vertical Ground Temperature Distribution on Parameter Estimation of In Situ Thermal Response Test with Unstable Heat Rate, Renew. Energy, 2019, vol. 136, pp. 264–274; DOI: 10.1016/j.renene.2018.12.112

    Article  Google Scholar 

  32. Eskilson, P., Thermal Analysis of Heat Extraction Boreholes, Doctoral Dissertation, University of Lund, Sweden, 1987.

  33. Hellström, G., Ground Heat Storage: Thermal Analyses of Duct Storage Systems, Doctoral Dissertation, University of Lund, Sweden, 1991.

  34. Göran, H., Ground Heat Storage: Thermal Analyses of Duct Storage Systems, Doctoral Dissertation, University of Lund, Sweden, 1991.

  35. Shen, P.Y. and Beck, A.E., Stabilization of Bottom Hole Temperature with Finite Circulation Time and Fluid Flow, Geophys. J. Int., 1986, vol. 86, pp. 63–90; https://doi.org/10.1111/j.1365-246X.1986.tb01073.x.

    Article  ADS  Google Scholar 

  36. Raymond, J., Therrien, R., Gosselin, L., and Lefebvre, R., A Review of Thermal Response Test Analysis Using Pumping Test Concepts, Ground Water, 2011, vol. 49, pp. 932–945; DOI: 10.1111/j.1745-6584.2010.00791.x

    Article  Google Scholar 

  37. Pehme, P.E., Greenhouse, J.P., and Parker, B.L., The Active Line Source Temperature Logging Technique and Its Application in Fractured Rock Hydrogeology, J. Envir. Engin. Geophys., 2007, vol. 12, pp. 307–322; DOI: 10.2113/jeeg12.4.307

    Article  Google Scholar 

  38. Marcotte, D. and Pasquier, P., On the Estimation of Thermal Resistance in Borehole Thermal Conductivity Test, Renew. Energy, 2008, vol. 33, pp. 2407–2415.

    Article  Google Scholar 

  39. Verdoya, M., Pacetti, C., Chiozzi, P., and Invernizzi, C., Thermophysical Parameters from Laboratory Measurements and In Situ Tests in Borehole Heat Exchangers, Appl. Therm. Eng., 2018, vol. 144, pp. 711–720; DOI: 10.1016/j.applthermaleng.2018.08.039

    Article  Google Scholar 

  40. Baek, S.H., Yeo, M.S., and Kim, K.W., Effects of the Geothermal Load on the Ground Temperature Recovery in a Ground Heat Exchanger, Energy Build., 2017, vol. 136, pp. 63–72; http://202.114.202.219:80/rwt/ ELSEVIER/https/MSYXTLUQPJUB/10.1016/j.enbuild.2016.11.056.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Dou, B., Guan, P. et al. Thermophysical and Heat Transfer Characteristics Based on Thermal Response and Thermal Recovery Test of a U-Pipe Borehole Heat Exchanger. J. Engin. Thermophys. 32, 117–137 (2023). https://doi.org/10.1134/S1810232823010101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232823010101

Navigation