Skip to main content
Log in

Temperature Distribution in the Mantle under the Continental Limb of the Subduction Zone and in the Subducting Plate

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Temperature distribution in the upper mantle under the continent and in the lower mantle was found. In the continental lithosphere the solution was obtained in the approximation of conductive heat transfer with internal heat sources in the continental crust. The temperature profiles over the thickness of the upper and lower mantle were obtained using the results of experimental and theoretical modeling of free convective heat transfer in a horizontal layer of a viscous fluid heated from below and cooled from above. The model of thermal and hydrodynamic structure of the subduction zone is presented, including a scheme of free-convective flows in the asthenospheric layer and layer C. The temperature profiles in the subducting lithospheric plate and in the continental limb of the subduction zone are presented. The heat flow due to friction at the boundary of the subducting plate and the continental limb has a significant effect on heat transfer and the formation of the temperature field in the subduction zone. The temperature level in the crustal layer of a subducting oceanic plate indicates the absence of melting in this layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

REFERENCES

  1. Dobretsov, N.L., Kirdyashkin, A.G., and Kirdyashkin, A.A., Glubinnya geodinamika (Deep-Level Geodynamics), Novosibirsk: Siberian Branch of the Russian Academy of Sciences, Branch “GEO,” 2001.

    Google Scholar 

  2. Turcotte, D.L. and Schubert, G., Geodynamics, Cambridge Univ. Press, 2002.

    Book  Google Scholar 

  3. Kincaid, C. and Griffiths, R.W., Variability in Flow and Temperatures within Mantle Subduction Zones, Geochem. Geophys. Geosyst., 2004, vol. 5, no. 6, pp. 1–20.

    Article  Google Scholar 

  4. Schellart, W.P. and Strak, V., A Review of Analogue Modelling of Geodynamic Processes: Approaches, Scaling, Materials and Quantification, with an Application to Subduction Experiments, J. Geodyn., 2016, vol. 100, pp. 7–32.

    Article  ADS  Google Scholar 

  5. Schellart, W.P., Kinematics of Subduction and Subduction-Induced Flow in the Upper Mantle, J. Geophys. Res., 2004, vol. 109, B07401.

    Article  ADS  Google Scholar 

  6. Strak, V. and Schellart, W.P., Evolution of 3-D Subduction-Induced Mantle Flow around Lateral Slab Edges in Analogue Models of Free Subduction Analysed by Stereoscopic Particle Image Velocimetry Technique, Earth Planet. Sci. Lett., 2014, vol. 403, pp. 368–379.

    Article  ADS  Google Scholar 

  7. Strak, V. and Schellart, W.P., Control of Slab Width on Subduction Induced Upper Mantle Flow and Associated Upwellings: Insights from Analog Models, J. Geophys. Res. Solid Earth, 2016, vol. 121, pp. 4641–4654.

    Article  ADS  Google Scholar 

  8. Anderson, O.L., The Temperature Profile of the Upper Mantle, J. Geophys. Res., 1980, vol. 85, no. B12, pp. 7003–7010.

    Article  Google Scholar 

  9. Cammarano, F., Goes, S., Vacher, P., and Giardini, D., Inferring Upper-Mantle Temperatures From Seismic Velocities, Phys. Earth Planet. Int., 2003, vol. 138, pp. 197–222.

    Article  ADS  Google Scholar 

  10. Kuskov, O.L. and Kronrod, V.A., Determining the Temperature of the Earth’s Continental Upper Mantle from Geochemical and Seismic Data, Geochem. Int., 2006, vol. 44, no. 3, pp. 232–248.

    Article  Google Scholar 

  11. Röhm, A.H.E., Snieder, R., Goes, S., and Trampert, J., Thermal Structure of Continental Upper Mantle Inferred from S-Wave Velocity and Surface Heat Flow, Earth Planet. Sci. Lett., 2000, vol. 181, pp. 395–407.

    Article  ADS  Google Scholar 

  12. Jeanloz, R. and Morris, S., Temperature Distribution in the Crust and Mantle, Ann. Rev. Earth Planet. Sci., 1986, vol. 14, pp. 377–415.

    Article  ADS  Google Scholar 

  13. McKenzie, D., Jackson, J., and Priestley, K., Thermal Structure of Oceanic and Continental Lithosphere, Earth Planet. Sci. Lett., 2005, vol. 233, pp. 337–349.

    Article  ADS  Google Scholar 

  14. Jaupart, C. and Mareschal, J.-C., Heat Flow and Thermal Structure of the Lithosphere ( Treatise Geophys., vol. 6. Crust and Lithosphere Dynamics), Schubert, G., Ed., Elsevier, 2007.

    Google Scholar 

  15. Peacock, S.M., Advances in the Thermal and Petrologic Modeling of Subduction Zones, Geosphere, 2020, vol. 16, no. 4, pp. 1647–1663.

    Article  ADS  Google Scholar 

  16. McKenzie, D.P., Speculations on the Consequences and Causes of Plate Motions, Geophys. J. Roy. Astr. Soc., 1969, vol. 18, no. 1608, pp. 1–32.

    Article  ADS  Google Scholar 

  17. Davies, J.H., Simple Analytic Model for Subduction Zone Thermal Structure, Geophys. J. Int., 1999, vol. 139, pp. 823–828.

    Article  ADS  Google Scholar 

  18. England, P. and Wilkins, C., A Simple Analytical Approximation to the Temperature Structure in Subduction Zones, Geophys. J. Int., 2004, vol. 159, pp. 1138–1154.

    Article  ADS  Google Scholar 

  19. Molnar, P., and England, P., Temperatures, Heat Flux, and Frictional Stress near Major Thrust Faults, J. Geophys. Res., 1990, vol. 95, pp. 4833–4856.

    Article  Google Scholar 

  20. England, P., On Shear Stresses, Temperatures, and the Maximum Magnitudes of Earthquakes at Convergent Plate Boundaries, J. Geophys. Res. Solid Earth, 2018, vol. 123, pp. 7165–7202.

    ADS  Google Scholar 

  21. van Keken, P., Wada, I., Sime, N., and Abers, G., Thermal Structure of the Forearc in Subduction Zones: A Comparison of Methodologies, Geochem. Geophys. Geosyst., 2019, vol. 20, pp. 3268–3288.

    Article  ADS  Google Scholar 

  22. England, P.C. and Katz, R.F., Melting Above the Anhydrous Solidus Controls the Location of Volcanic Arcs, Nature, 2010, vol. 467, pp. 700–704.

    Article  ADS  Google Scholar 

  23. Davies, J.H. and Stevenson, D.J., Physical Model of Source Region of Subduction Zone Volcanics, J. Geophys. Res., 1992, vol. 97, no. B2, pp. 2037–2070.

    Article  Google Scholar 

  24. Kincaid, C. and Sacks, I.S., Thermal and Dynamical Evolution of the Upper Mantle in Subduction Zones, J. Geophys. Res., 1997, vol. 102, no. B6, pp. 12,295–12,315.

    Article  Google Scholar 

  25. van Keken, P.E., Kiefer, B., and Peacock, S.M., High-Resolution Models of Subduction Zones: Implications for Mineral Dehydration Reactions and the Transport of Water into the Deep Mantle, Geochem. Geophys. Geosyst., 2002, vol. 3, no. 10, 1056, pp. 1–20.

    Article  Google Scholar 

  26. van Keken, P.E., Hacker, B.R., Syracuse, E.M., and Abers, G.A., Subduction Factory: 4. Depth-Dependent Flux of H2O from Subducting Slabs Worldwide, J. Geophys. Res., 2011, vol. 116, no. B01401, pp. 1–15.

    Article  Google Scholar 

  27. Syracuse, E.M., van Keken, P.E., and Abers, G.A., The Global Range of Subduction Zone Thermal Models, Phys. Earth Planet. Int., 2010, vol. 183, nos. 1/2, pp. 73–90.

    Article  ADS  Google Scholar 

  28. Kirdyashkin, A.A. and Kirdyashkin, A.G., Experimental and Theoretical Simulation of the Thermal and Hydrodynamic Structure of a Subducting Plate, Geotect., 2013, vol. 47, no. 3, pp. 156–166.

    Article  ADS  Google Scholar 

  29. Kirdyashkin, A.A. and Kirdyashkin, A.G., Forces Acting on a Subducting Oceanic Plate, Geotect., 2014, vol. 48, no. 1, pp. 54–67.

    Article  ADS  Google Scholar 

  30. Kirdyashkin, A.G., Teplovye gravitacionnye techenija i teploobmen v astenosfere (Thermal Gravitational Flows and Heat Transfer in the Asthenosphere), Novosibirsk: Nauka, 1989.

    Google Scholar 

  31. Kirdyashkin, A.A. and Kirdyashkin, A.G., Effect of the Oceanic Lithosphere Velocity on Free Convection in the Asthenosphere beneath Mid-Ocean Ridges, Izv. Phys. Solid Earth, 2008, vol. 44, no. 4, pp. 291–302.

    Article  ADS  Google Scholar 

  32. Kirdyashkin, A.A., Kirdyashkin, A.G., and Surkov, N.V., Thermal Gravitational Convection in the Asthenosphere beneath a Mid-Oceanic Ridge and Stability of Main Deep-Seated Parageneses, Russ. Geol. Geophys., 2006, vol. 47, no. 1, pp. 73–93.

    Google Scholar 

  33. Dobretsov, N.L. and Kirdyashkin, A.G., Subduction Zone Dynamics: Models of an Accretionary Wedge, Ofioliti, 1992, vol. 17, no. 1, pp. 155–164.

    Google Scholar 

  34. Dobretsov, N.L. and Kirdyashkin, A.G., Deep-Level Geodynamics, Rotterdam, Brookfield: A.A. Balkema Publ., 1998.

    Google Scholar 

  35. Dobretsov, N.L., Kirdyashkin, A.G., and Kirdyashkin, A.A., Geodynamic and Thermal Models of the Subduction Zone, Fiz. Mezomekh., 2009, vol. 12, no. 1, pp. 5–16.

    MATH  Google Scholar 

  36. Schlichting, G., Boundary-Layer Theory, New York, McGraw-Hill, 1979.

    MATH  Google Scholar 

  37. Strehlau, J. and Meissner, R., Estimation of Crustal Viscosities and Shear Stresses From an Extrapolation of Experimental Steady State Flow Data, Composition, Structure and Dynamics of the Lithosphere–Asthenosphere System, vol. 16, Fuchs, K. and Froidevaux, C., Eds., Washington: AGU, 1987.

  38. Zharkov, V.N., Vnutrennee stroenie Zemli i planet (Internal Structure of Earth and Planets), Moscow: Nauka, 1983.

    Google Scholar 

  39. Surkov, N.V., Lertsolitovaya paleogeoterma (Lherzolite Paleogeotherm), Problemy prognozirovaniya, poiskov i izucheniya mestorozhdeniy poleznyh iskopaemyh na poroge XXI veka (Problems of Forecasting, Exploration and Study of Mineral Deposits into the 21st Century), Savko, A.D. and Zinchuk, N.N., Eds., Voronezh: Voronezh State Univ. Publ. House, 2003.

  40. Herzberg, C. and Zhang, J., Melting Experiments on Anhydrous Peridotite KLB-1: Compositions of Magmas in the Upper Mantle and Transition Zone, J. Geophys. Res., 1996, vol. 101, no. B4, pp. 17,729–17,742.

    Google Scholar 

  41. Walzer, U., Hendel, R., and Baumgardner, J., The Effects of a Variation of the Radial Viscosity Profile on Mantle Evolution, Tectonophys., 2004, vol. 384, pp. 55–90.

    Article  ADS  Google Scholar 

  42. Perchuk, L.L. and Kushiro, I., Experimental Study of the System Alkali Basalt-Water up to Pressure 20 Kbar in Respect of Estimation of H2O Content in the Original Magmas beneath the Island Arcs, Geolog. Zbornik–Geol. Carpathica, 1985, vol. 36, no. 3, pp. 359–368.

    Google Scholar 

  43. Yasuda, A., Fujii, T., and Kurita, K., Melting Phase Relations of an Anhydrous Mid-Ocean Ridge Basalt from 3 to 20 Gpa: Implications for the Behavior of Subducted Oceanic Crust in the Mantle, J. Geophys. Res., 1994, vol. 99, no. B5, pp. 9401–9414.

    Article  Google Scholar 

  44. Bina, C.R. and Helffrich, G., Phase Transition Clapeyron Slopes and Transition Zone Seismic Discontinuity Topography, J. Geophys. Res., 1994, vol. 99, no. B8. pp. 15,853–15,860.

    Article  Google Scholar 

  45. Trubitsyn, V.P., Phase Transitions, Compressibility, Thermal Expansion, and Adiabatic Temperature in the Mantle, Izv., Phys. Solid Earth, 2000, vol. 36, no. 2, pp. 101–113.

    Google Scholar 

  46. Faccenda, M. and Dal Zilio, L., The Role of Solid–Solid Phase Transitions in Mantle Convection, Lithos, 2017, vols. 268–271, pp. 198–224.

    Article  ADS  Google Scholar 

  47. Trubitsyn, V.P., Evseev, A.N., Baranov, A.A., and Trubitsyn, A.P., Phase Transition Zone Width Implications for Convection Structure, Izv., Phys. Solid Earth, 2008, vol. 44, no. 8, pp. 603–614.

    Article  ADS  Google Scholar 

  48. Kutateladze, S.S., Kirdyashkin, A.G., and Ivakin, V.P., Turbulentnaya estestvennaya konvektsiya u izotermicheskoy vertikal’noy plastiny (Turbulent Natural Convection at an Isothermal Vertical Plate), Teplofiz. Vys. Temp., 1972, vol. 10, no. 1, pp. 91–95.

    Google Scholar 

  49. Leont’ev, A.I. and Kirdyashkin, A.G., Teploobmen pri svobodnoy konvektsii v gorizontal’nykh shchelyakh i v bol’shom ob”eme nad gorizontal’noy poverkhnost’yu (Heat Transfer under Free Convection in Horizontal Slits and in a Large Volume over a Horizontal Surface), Inzh.-Fiz. Zh., 1965, vol. 9, no. 1, pp. 9–14.

    Google Scholar 

  50. Lindemann, F.A., Über die Berechnung Molekularer Eigenfrequenzen, Physicalische Zeitschrift, 1910, vol. XI, no. 14, pp. 609–612.

    MATH  Google Scholar 

  51. Katsura, T., Yoneda, A., Yamazaki, D., Yoshino, T., and Ito, E., Adiabatic Temperature Profile in the Mantle, Phys. Earth Planet. Int., 2010, vol. 183, nos. 1/2, pp. 212–218.

    Article  ADS  Google Scholar 

  52. Dobretsov, N.L., Kirdyashkin, A.G., and Kirdyashkin, A.A., Parameters of Hot Spots and Thermochemical Plumes, Geol. Geofiz., 2005, vol. 46, no. 6, pp. 589–602.

    Google Scholar 

  53. Kirdyashkin, A.A., Dobretsov, N.L., and Kirdyashkin, A.G., Heat Transfer Between a Thermochemical Plume Channel and the Surrounding Mantle in the Presence of Horizontal Mantle Flow, Izv., Phys. Solid Earth, 2009, vol. 45, no. 8, pp. 684–700.

    Article  ADS  MATH  Google Scholar 

  54. Meschede, M., Lithosphere: Structure and Composition, Encyclopedia of Marine Geosciences, Harff, J., Meschede, M., Petersen, S., and Thiede, J., Eds., Dordrecht: Springer, 2015.

    Google Scholar 

  55. Xu, Y., Weidner, D.J., Chen, J., Vaughan, M.T., Wang, Y., and Uchida, T., Flow-Law for Ringwoodite at Subduction Zone Conditions, Phys. Earth Planet. Int., 2003, vol. 136, pp. 3–9.

    Article  ADS  Google Scholar 

  56. Karato, S. and Wu, P., Rheology of the Upper Mantle: A Synthesis, Science, 1993, vol. 260, no. 5109, pp. 771–778.

    Article  ADS  Google Scholar 

  57. Kirdyashkin, A.A., Kirdyashkin, A.G., Distanov, V.E., and Gladkov, I.N., On Heat Source in Subduction Zone, Geodyn. Tectonophys., 2021, vol. 12, no. 3, pp. 471–484.

    Article  Google Scholar 

  58. Kirdyashkin, A.G., Kirdyashkin, A.A., Gladkov, I.N., and Distanov, V.E., Thermal and Hydrodynamic Structure and Volcanism in Subduction Zone, Transbaikal State Univ. J., 2019, vol. 25, no. 9, pp. 13–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Kirdyashkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirdyashkin, A.G., Kirdyashkin, A.A. & Banushkina, S.V. Temperature Distribution in the Mantle under the Continental Limb of the Subduction Zone and in the Subducting Plate. J. Engin. Thermophys. 32, 15–35 (2023). https://doi.org/10.1134/S1810232823010022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232823010022

Navigation