Skip to main content
Log in

Enhancement of Heat Transfer Due to Decay of Unstable State of Solution

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The article elucidates characteristic features of heat transfer during rapid transfer of single-phase solution beyond the liquid-liquid spinodal. It also investigates particularities of the thermal response accompanying decay of unstable state. The objects of the study were aqueous solutions of polypropylene glycols and ethylene glycol monobutyl ether. Controlled pulsed heating of probe was applied, based on the thermal mode of probe temperature stabilization at a given temperature T st. The temperature stabilization stage lasted for 20 to 100 ms; the temperature T st was increased step by step from the initial value T 0 up to 673–773 K. The values of the instantaneous coefficient of heat transfer to pure components and their solutions were calculated from the primary data. At a certain degree of superheating, a temperature-threshold effect of heat transfer enhancement up to 2–3 times was found, which is associated with the decay of unstable state of the solution. The fundamental possibility was revealed for determination of approximation for the lateral and upper spinodal branches, reconstructed on the basis of the characteristic change in the response signals. The concentration of the solution was changed step by step in the zone of compositions lying under the liquid-liquid equilibrium line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

REFERENCES

  1. Lexin, M.A., Yagov, V.V., Zabirov, A.R., Kanin, P.K., Vinogradov, M.M., and Molotova, I.A. Investigation of Intensive Cooling of High-Temperature Bodies in Binary Water–Isopropanol Mixture, High Temp., 2020, vol. 58, no. 3 pp. 369–376; DOI: 10.1134/S0018151X20030116

    Article  Google Scholar 

  2. Pavlenko, A.N., Kuznetsov, D.V., and Bessmeltsev, V.P. Experimental Study on Heat Transfer and Critical Heat Flux during Pool Boiling of Nitrogen on 3D Printed Structured Copper Capillary-Porous Coatings, J. Eng. Therm., 2021, vol. 30, no. 3, pp. 341–349; DOI: 10.1134/S1810232821030012

    Article  Google Scholar 

  3. Lv, Y., Liu, M.Y., Hui, L.F., Pavlenko, A.N., Surtaev, A.S., and Serdyukov, V.S., Heat Transfer and Fouling Rate at Boiling on Superhydrophobic Surface with TiO2 Nanotube-Array Structure, J. Eng. Therm., 2019, vol. 28, no. 2, pp. 163–176; DOI: 10.1134/S1810232819020012.

    Article  Google Scholar 

  4. Xing, W., Ullmann, A., Brauner, N., Plawsky, J., and Peles, Y., Advancing Micro-Scale Cooling by Utilizing Liquid-Liquid Phase Separation, Sci. Rep., 2018, vol. 8, p. 12093; https://doi.org/10.1038/s41598-018-30584-6.

    Article  ADS  Google Scholar 

  5. Farisè, S., Franzoni, A., Poesio, P., and Beretta, G.P., Heat Transfer Enhancement by Spinodal Decomposition in Micro Heat Exchangers, Exp. Therm. Fluid Sci., 2012, vol. 42, pp. 38–45.

    Article  Google Scholar 

  6. Khandekar, S., Sahu, G., Muralidhar, K., Gatapova, E. Ya., Kabov, O.A., Hu, R., Luo, X., and Zhao, L., Cooling of High-Power LEDs by Liquid Sprays: Challenges and Prospects, Appl. Therm. Engin., 2021, vol. 184, p. 115640; https://doi.org/10.1016/j.applthermaleng.2020.115640.

    Article  Google Scholar 

  7. Sazhin, S.S., Droplets and Sprays: Simple Models of Complex Processes, Springer, Cham, 2022; https://doi.org/10.1007/978-3-030-99746-5.

    Book  MATH  Google Scholar 

  8. Kurganov, V.A., Zeigarnik, Yu.A., and Maslakova, I.V., Normal and Deteriorated Heat Transfer under Heating Turbulent Supercritical Pressure Coolants Flows in Round Tubes, in Handbook of Research on Advancements in Supercritical Fluids Applications for Sustainable Energy Systems, Chen, L., Ed., IGI Global, 2021, pp. 494–532; DOI: 10.4018/978-1-7998-5796-9.ch014

  9. Surtaev, A.S., Serdyukov, V.S., and Pavlenko, A.N., Nanotechnologies for Thermophysics: Heat Transfer and Crisis Phenomena at Boiling, Nanotech. Russia, 2016, vol. 11, nos. 11/12, pp. 696–715.

    Article  Google Scholar 

  10. Volodin, O.A., Pecherkin, N.I., and Pavlenko, A.N., Heat Transfer Enhancement at Boiling and Evaporation of Liquids on Modified Surfaces—A Review, High Temp., 2021, vol. 59, no. 2, pp. 248–276.

    Article  Google Scholar 

  11. Zhukov, V.E., Slesareva, E.Y., and Pavlenko, A.N., Effect of Modification of Heat-Release Surface on Heat Transfer in Nucleate Boiling at Free Convection of Freon, J. Eng. Therm., 2021, vol. 30, pp. 1–13; DOI: 10.1134/S181023282101001X

    Article  Google Scholar 

  12. Bergles, A.E. and Manglik, R.M., Current Progress and New Developments in Enhanced Heat and Mass Transfer, J. Enhanced Heat Transfer, 2013, vol. 20, no. 1, pp. 1–15; https://doi.org/ 10.1615/JEnhHeatTransf.2013006989.

    Article  Google Scholar 

  13. Xing, W., Vuthaa, A.K., Yu, X., Ullmann, A., Brauner, N., and Peles, Y., Liquid/Liquid Phase Separation Heat Transfer at the Microscale, Int. J. Heat Mass Transfer, 2017, vol. 107, pp. 53–65; DOI: 10.1016/j.ijheatmasstransfer.2016.11.028

    Article  Google Scholar 

  14. Skripov, P.V., Igolnikov, A.A., Rutin, S.B., and Melkikh, A.V., Heat Transfer by Unstable Solution Having the Lower Critical Solution Temperature, Int. J. Heat Mass Transfer, 2022, vol. 184, p. 122290.

    Article  Google Scholar 

  15. Poesio, P., Lezzi, A.M., and Beretta, G.P., Evidence of Convective Heat Transfer Enhancement Induced by Spinodal Decomposition, Phys. Rev. E, 2007, vol. 75, no. 6, p. 066306.

    Article  ADS  Google Scholar 

  16. Ullmann, A., Poesio, P., and Brauner, N., Enhancing Heat Transfer Rates by Inducing Liquid-Liquid Phase Separation: Applications and Modeling, Interfacial Phen. Heat Transfer, 2015, vol. 3, no. 1.

  17. Volosnikov, D.V., Povolotskiy, I.I., Igolnikov, A.A., Vasin, M.G., Son, L.D., and Skripov, P.V., Intensification of Heat Transfer During Spinodal Decomposition of a Superheated Aqueous Oligomer Solution, J. Phys.: Conf. Ser., vol. 20211787, p. 012032; DOI: 10.1088/1742-6596/1787/1/012032

    Article  Google Scholar 

  18. Skripov, V.P. and Skripov, A.V., Spinodal Decomposition (Phase Transitions via Unstable States), Sov. Phys. Usp., 1979, vol. 22, pp. 389–410; DOI: 10.1070/PU1979v022n06ABEH005571

    Article  ADS  Google Scholar 

  19. Skripov, P.V. and Rutin, S.B., Features of Supercritical Heat Transfer at Short Times and Small Sizes, Int. J. Therm., 2021, vol. 42, no. 7, p. 110.

    Article  ADS  Google Scholar 

  20. Van Erp, R., Soleimanzadeh, R., Nela, L., et al., Co-Designing Electronics with Microfluidics for More Sustainable Cooling, Nature, 2020, vol. 585, no. 7824, pp. 211–230; DOI: 10.1038/s41586-020-2666-1

    Article  ADS  Google Scholar 

  21. Rutin, S.B., Igolnikov, A.A., and Skripov, P.V., Study of Heat Transfer to Supercritical Pressure Water across a Wide Range of Parameters in Pulse Heating Experiments, Appl. Therm. Engin., 2022, vol. 201, p. 117740; https://doi.org/10.1016/j.applthermaleng.2021.117740.

    Article  Google Scholar 

  22. Ryutin, S.B. and Skripov, P.V., Heat Transfer in Supercritical Fluids: Reconciling the Results of Pulse and Stationary Experiments, High Temp., 2021, vol. 59, no. 2, pp. 178–185; DOI: 10.31857/ S0040364421010129

    Article  Google Scholar 

  23. Volosnikov, D.V., Povolotsky, I.I., Starostin, A.A., and Skripov, P.V., Heat Transfer to Aqueous Glycol Solutions in Pulse-Superheated States, High Temp., 2021, vol. 59, nos. 2–6, pp. 283–291; DOI: 10.1134/S0018151X21020152

    Article  Google Scholar 

  24. Povolotskiy, I.I., Volosnikov, D.V., and Skripov, P.V., Heat Conduction of Superheated Mixtures: Relationship with Excess Volume, J. Eng. Therm., 2022, vol. 31, no. 1, pp. 19–31; DOI: 10.1134/S1810232822010039

    Article  Google Scholar 

  25. Afanasev, S.Y., Zhukov, S.A., and Echmaev, S.B., Investigation of Heat Transfer at Subcooled Nucleate Boiling under Conditions of Stabilization of the Wire Heater Temperature, High Temp., 1996, vol. 34, no. 4, pp. 578–584.

    Google Scholar 

  26. Skripov, P.V., Starostin, A.A., and Volosnikov, D.V., Heat Transfer in Pulse-Superheated Liquids, Dokl. Phys., 2003, vol. 48, pp. 228–231; DOI: 10.1134/1.1581317

    Article  ADS  MATH  Google Scholar 

  27. Firman, P. and Kahlweit, M., Phase Behavior of the Ternary System H2O-Oil-Polypropyleneglycol (PPG), Coll. Polym. Sci., 1986, vol. 264, no. 11, pp. 936–942.

    Article  Google Scholar 

  28. Muller, C., Liquid-Liquid Equilibria of Binary Polymer-Solvent Systems, Diploma thesis, University of Karlsruhe, 1991.

  29. King, A.D., The Solubility of Gases in Aqueous Solutions of Poly(propylene glycol), J. Colloid Interface Sci., 2001, vol. 243, no. 2, pp. 457–462.

    Article  ADS  Google Scholar 

  30. Lee, H.-S. and Lee, H., Liquid-Liquid Equilibria and Partitioning of o-Chlorophenol in Ethylene Glycol Monobutyl Ether + Water, Diethylene Glycol Monohexyl Ether + Water, and Poly(oxyethylene(4)) Lauryl Ether + Water, J. Chem. Engin. Data, 1996, vol. 41, no. 6, pp. 1358–1360.

    Article  Google Scholar 

  31. Hino, T., Lambert, S.M., Soane, D.S., and Prausnitz, J.M., Lattice Thermodynamics for Binary Closed-Loop Equilibria: Ordinary and Polymer Systems, AIChE J., 1993, vol. 39, no. 5, pp. 837–845; DOI: 10.1002/aic.690390512

    Article  Google Scholar 

  32. Schneider, G., Druckeinfluß auf die Entmischung flüssiger Systeme, I Geschlossene Mischlingslücken bis 5000 bar, Z. Physikal. Chemie, 1963, vol. 37, nos. 5/6, pp. 333–352.

    Article  Google Scholar 

  33. Wagnera, W. and Prußb, A., The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, J. Phys. Chem. Ref. Data, 2002 vol. 31, no. 2. pp. 387–535.

    Article  ADS  Google Scholar 

  34. Phylippov, L.P. and Kravchun, S.N., Thermal Conductivity of Liquid Solutions. Zh. Fiz. Khim., 1982, vol. 56, no. 11, pp. 2753–2756.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Skripov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volosnikov, D.V., Povolotskiy, I.I. & Skripov, P.V. Enhancement of Heat Transfer Due to Decay of Unstable State of Solution. J. Engin. Thermophys. 32, 1–14 (2023). https://doi.org/10.1134/S1810232823010010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232823010010

Navigation