Skip to main content
Log in

Study on Deposition Rate Model Optimization of Crystallization Fouling

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

In view of the different scaling rates of different types of materials, the deposition rate model of crystallization fouling is optimized in this paper. Firstly, a dynamic loop simulation experimental platform for scale accumulation is built. Based on the loop experimental results, the relationship between friction factor and Reynolds number and material surface physical parameters (surface energy, roughness and contact angle) is qualitatively analyzed. On this basis, the functional relationship between contact angle and friction factor under different flow regimes is established by using dimensional analysis and SPSS regression analysis; Secondly, the friction factor formula including surface physicochemical parameters is substituted into the deposition rate model of crystallization fouling, and then the optimized deposition rate model of crystallization fouling is obtained. Finally, the accuracy and reliability of the optimized crystallization fouling deposition rate model are verified by pipe flow experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

REFERENCES

  1. Hasson, D., Avriel, M., and Resnick, W., Mechanism of CaCO3, Scale Deposition on Heat Transfer Surfaces, Ind. Eng. Chem. Fund., 1968, vol. 7, pp. 59–65.

    Article  Google Scholar 

  2. Brahim, F., Augustin, W., and Bohnet, M., Numerical Simulation of the Fouling Process, Int. J. Thermal Sci., 2003, vol. 42, iss. 3, pp. 323–334.

    Article  Google Scholar 

  3. Zhenhua, Q., Yongchang, Ch., and Chongfang, M., Heat and Mass Transfer Model of Calcium Carbonate Scaling on Heat Exchange Surface, Scientia Sinica (Technologica), 2008, vol. 38, no. 5, pp. 773–780.

    MATH  Google Scholar 

  4. Bansal, B., Müller-Steinhagen, H., and Chen, X.D., Effect of Suspended Particles on Crystallization Fouling in Plate Heat Exchangers, ASME. J. Heat Transfer, 1997, vol. 119 no. 3, pp. 568–574.

    Article  Google Scholar 

  5. Zhiming, X. and Jinchao, Z., Numerical Simulation of Formation Process of Crystallization Fouling of CaSO4, J. Northeast Electric Power Univ., 2008, vol. 28, no. 1, pp. 8–11.

    Google Scholar 

  6. Siegel, J.A. and Nazaroff, W.W., Predicting Particle Deposition on HVAC Heat Exchangers, Atmos. Envir., 2003, vol. 37, no. 39, pp. 5587–5596.

    Article  ADS  Google Scholar 

  7. McGuire, J. and Swartzel, K.R., Influence of Solid Surface Energy on Macromolecular Adsorption from Milk, Am. Inst. Chem. Engin. Nat. Meet., 1987, vol. 31.

  8. Keogh, W., Neville, A., Huggan, M,, et al., Deposition of Inorganic Carbonate, Sulfate and Sulfide Scales on Anti-Fouling Surfaces in Multiphase Flow, Energy Fuels, 2017, vol. 31, no. 11, pp. 11838–11851.

    Article  Google Scholar 

  9. Ozden, H.O. and Puri, V.M., Computational Analysis of Fouling by Low Energy Surfaces, J. Food Engin., 2010, vol. 99, pp. 250–256.

    Article  Google Scholar 

  10. Bogacz, W., et al., Impact of Roughness, Wettability and Hydrodynamic Conditions on the Incrustation on Stainless Steel Surfaces, Appl. Thermal Engin., 2017, vol. 112, pp. 352–361.

    Article  Google Scholar 

  11. Nana, S., Huayi, J., Aiguo, L., et al., Influences of Material Types on the Mechanisms of Crystal Growth in an Aggregate Scaling Device, Int. Comm. Heat Mass Transfer, vol. 2019, no. 108, pp. 1–7.

    Google Scholar 

  12. Keysar, S., Semiat, R., Hasson, D., et al., Effect of Surface Roughness on the Morphology of Calcite Crystallizing on Mild Steel, J. Coll. Interface Sci., 1994, vol. 16, no. 2, pp. 311–319.

    Article  ADS  Google Scholar 

  13. Bansal, B., Chen, X.D., and Müller-Steinhagen, H., Analysis of ‘Classical’ Deposition Rate Law for Crystallisation Fouling, Chem. Engin. Proc., 2008, vol. 47, pp. 1201–1210.

    Article  Google Scholar 

  14. Wang, M., Liang, J., Tang, Q., et al., Surface Free Energy of Copper-Zinc Alloy for Energy-Saving of Boiler, Rare Metals, 2006, vol. 25, no. 6, pp. 324–327.

    Article  Google Scholar 

  15. Xu, Z.M., Zhang, Z.B., and Cheng, H.M., Numerical Simulation of CaCO3 Fouling Process in a Tube, December, 2009.

  16. Helalizadeh, A., Müller-Steinhagen, H., and Jamialahmadi, M., Mixed Salt Crystallization Fouling, Chem. Engin. Proc., 2000, vol. 39, no. 1, pp. 29–43.

    Article  Google Scholar 

  17. Jian, S., Hua, Z., and Ping, Z., Growth Characteristics of CaCO3 Fouling on Copper Surface in Initial Stage under Different Water Quality, J. Engin. Thermal Energy Power, 2013, vol. 2, pp. 196–201.

    Google Scholar 

  18. Bukuaghangin, O., Sanni, O., Kapur, N., et al., Kinetics Study of Barium Sulphate Surface Scaling and Inhibition with a Once-Through Flow System, J. Petr. Sci. Engin., 2016, vol. 147, pp. 699–706.

    Article  Google Scholar 

  19. Sanni, O., Bukuaghangin, O., Huggan, M., et al., Development of a Novel Once-Through Flow Visualization Technique for Kinetic Study of Bulk and Surface Scaling, Rev. Sci. Instrum., 2017, vol. 88, no. 10, p. 103903.

    Article  ADS  Google Scholar 

  20. Fahiminia, F., Watkinson, A.P., and Epstein, N., Early Events in the Precipitation Fouling of Calcium Sulphate Dihydrate under Sensible Heating Conditions, Canadian J. Chem. Engin., 2008, vol. 85, no. 5, pp. 679–691.

    Article  Google Scholar 

  21. Tao, C., Experimental and Numerical Study on the Growth Characteristics of CaCO3 Fouling in a Circular Tube, Dissertation, Lanzhou Jiaotong Univ., 2015.

  22. Bingqiang, Z., Yun, L., and Zhiming, X., Experimental Study on Influencing Factors of CaCO3 Crystallization Fouling Process, J. Northeast Electric Power Univ., 2008, vol. 28, no. 1, pp. 49–54.

    Google Scholar 

  23. Hasson, D., Avriel, M., Resnick, W., et al., Calcium Carbonate Scale Deposition on Heat Transfer Surfaces, Desalinat., 1968, vol. 5, no. 1, pp. 107–119.

    Article  Google Scholar 

  24. Krause, S., Fouling of Heat-Transfer Surfaces by Crystallization and Sedimentation, Int. Chem. Engin., 1993, vol. 33, p. 3.

    Google Scholar 

  25. Helalizadeh, A., Müller-Steinhagen, H., and Jamialahmadi, M., Mathematical Modelling of Mixed Salt Precipitation during Convective Heat Transfer and Sub-Cooled Flow Boiling, Chem. Engin. Sci., 2005, vol. 60, no. 18, pp. 5078–5088.

    Article  ADS  Google Scholar 

  26. Mwaba, M.G., Rindt, C.C., Steenhoven, M.A.G., et al., Experimental Investigation of CaSO4 Crystallization on a Flat Plate, Heat Transfer Engin., 2006, vol. 27, no. 3, pp. 42–54.

    Article  ADS  Google Scholar 

  27. Brahim, F., Augusti, W., and Bohnet, M., Numerical Simulation of the Fouling Process, Int. J. Thermal Sci., 2003, vol. 42, pp. 323–334.

    Article  Google Scholar 

  28. Molki, M. and Sparrow, E.M., An Empirical Correlation for the Average Heat Transfer Coefficient in Circular Tubes, J. Heat Transfer, 1986, vol. 108, no. 2, pp. 482–484.

    Article  Google Scholar 

  29. Bott, T.R., Aspects of Crystallization Fouling, Exp. Thermal Fluid Sci. (EXP THERM FLUID), 1997, vol. 14, no. 4, pp. 356–360.

    Article  Google Scholar 

  30. Pääkkönen, T.M., Riihimäki, M., Simonson, C.J., et al., Modeling CaCO3 Crystallization Fouling on a Heat Exchanger Surface—Definition of Fouling Layer Properties and Model Parameters, Int. J. Heat Mass Transfer, 2015, vol. 83, pp. 84–98.

    Article  Google Scholar 

  31. Pääkkönen, T.M., Riihimäki, M., Simonson, C.J., et al., Crystallization fouling of CaCO3—Analysis of Experimental Thermal Resistance and Its Uncertainty, Int. J. Heat Mass Transfer, 2012, vol. 55, nos. 23/24, pp. 6927–6937.

    Article  Google Scholar 

  32. Faming, J., Study on Inhibition of Scaling Crystallization and Surface Interface Behavior on Special Wettability Surface, Dissertation, Univ. of Chinese Academy of Sciences, 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Wang, J., Li, J. et al. Study on Deposition Rate Model Optimization of Crystallization Fouling. J. Engin. Thermophys. 32, 162–179 (2023). https://doi.org/10.1134/S1810232823010125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232823010125

Navigation