Skip to main content
Log in

Double Freon Hydrates: Composition and Thermodynamic Properties

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The paper presents the results of calculations of the P-T diagram of “ice phase (liquid phase)–gas phase–hydrate phase” equilibrium for freons R23 and R34a and 90%R23+10%R134a mixture. It is shown the freon R134a forms a stable CS-II hydrate phase in the temperature range of 260–280 K and pressure range of 0.0267–0.21 MPa and freon R23 creates a stable CS-I hydrate phase in the temperature range of 260–280 K and pressure range of 0.238–0.75 MPa. The calculation results are consistent with the known experimental data. It is shown that addition of 10% of R134a to the freon mixture results in the formation of CS-II hydrate phase in the temperature range of 260–280 K and pressure range of 0.0167–0.15 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. Sloan, E.D., Fundamental Principles and Applications of Natural Gas Hydrates, Nature, 2003, vol. 426, no. 6964, pp. 353–359.

    Article  ADS  Google Scholar 

  2. Eslamimanesh, A., Mohammadi, A.H., Richon, D., Naidoo, P., and Ramjugernath, D., Application of Gas Hydrate Formation in Separation Processes: A Review of Experimental Studies, J. Chem. Thermodyn., 2012, vol. 46, pp. 62–71.

    Article  Google Scholar 

  3. Meleshkin, A.V., Bartashevich, M.V., and Glezer, V.V., Investigation of the Effect of Operating Parameters on the Synthesis of Gas Hydrate by the Method Based on Self-Organizing Process of Boiling-Condensation of a Hydrate-Forming Gas in the Volume of Water, Appl. Surf. Sci., 2019, vol. 493, pp. 847–851.

    Article  ADS  Google Scholar 

  4. Meleshkin, A.V. and Marasanov, N.V., Study of Enhancement of Synthesis of Freon 134a Gas Hydrate during Boiling of Liquefied Gas with Its Simultaneous Stirring with Water, J. Eng. Therm., 2021, vol. 30, no. 4, pp. 699–703.

    Article  Google Scholar 

  5. Meleshkin, A.V. and Shkoldina, A.A., Modeling of Freon 134a Gas Hydrate Synthesis via Boiling and Condensation of Gas in a Volume of Water, J. Eng. Therm., 2021, vol. 30, no. 4, pp. 693–698.

    Article  Google Scholar 

  6. Meleshkin, A.V., Bartashevich, M.V., Glezer, V.V., and Glebov, R.A., Effect of Surfactants on Synthesis of Gas Hydrates, J. Eng. Therm., 2020, vol. 29, no. 2, pp. 264–266.

    Article  Google Scholar 

  7. Meleshkin, A.V., Bartashevich, M.V., and Glezer, V.V., Hydrate Formation in Water Foam Volume, J. Eng. Therm., 2020, vol. 29, no. 2, pp. 279–284.

    Article  Google Scholar 

  8. Hashemi, H., Babaee, S., Mohammadi, A.H., Naidoo, P., and Ramjugernath, D., State of the Art and Kinetics of Refrigerant Hydrate Formation, Int. J. Refrig., 2019, vol. 98, pp. 410–427.

    Article  Google Scholar 

  9. Hashemi, H., Babaee, S., Mohammadi, A.H., Naidoo, P., and Ramjugernath, D., Experimental Study and Modeling of the Kinetics of Refrigerant Hydrate Formation, J. Chem. Thermodyn., 2015, vol. 82, pp. 47–52.

    Article  Google Scholar 

  10. Karamoddin, M. and Varaminian, F., Water Desalination Using R141b Gas Hydrate Formation, Desalin. Water Treat., 2014, vol. 52, nos. 13–15, pp. 2450–2456.

    Article  Google Scholar 

  11. Liang, D., Wang, R., Guo, K., and Fan, S., Prediction of Refrigerant Gas Hydrates Formation Conditions, J. Thermal Sci., 2001, vol. 10, no. 1, pp. 64–68.

    Article  ADS  Google Scholar 

  12. Antonov, D.V., Donskoy, I.G., Gaidukova, O.S., Misyura, S.Y., Morozov, V.S., Nyashina, G.S., and Strizhak, P.A., Dissociation Characteristics and Anthropogenic Emissions from the Combustion of Double Gas Hydrates, Environ. Res., 2022, vol. 214, p. 113990.

    Article  ADS  Google Scholar 

  13. Antonov, D.V., Donskoy, I.G., Gaidukova, O.S., Misyura, S.Y., Morozov, V.S., Nyashina, G.S., and Strizhak, P.A., Dissociation and Combustion of Mixed Methane-Ethane Hydrate, Fuel, 2022, vol. 325, p. 124771.

    Article  Google Scholar 

  14. Gaidukova, O., Misyura, S., Razumov, D., and Strizhak, P., Modeling of a Double Gas Hydrate Particle Ignition, Appl. Sci., 2022, vol. 12, no. 12, p. 5953.

    Article  Google Scholar 

  15. Misyura, S.Y., Donskoy, I.G., Manakov, A.Y., Morozov, V.S., Strizhak, P.A., Skiba, S.S., and Sagidullin, A.K., Combustion of a Powder Layer of Methane Hydrate: The Influence of Layer Height and Air Velocity above the Layer, Flow, Turbul. Combust., 2022, vol. 109, no. 1, pp. 175–191.

    Article  Google Scholar 

  16. Semenov, A.P., Mendgaziev, R.I., Stoporev, A.S., Istomin, V.A., Sergeeva, D.V., Tulegenov, T.B., and Vinokurov, V.A., Dimethyl Sulfoxide as a Novel Thermodynamic Inhibitor of Carbon Dioxide Hydrate Formation, Chem. Engin. Sci., 2022, vol. 255, p. 117670.

    Article  Google Scholar 

  17. Hashemi, H., Babaee, S., Mohammadi, A.H., Naidoo, P., and Ramjugernath, D., Experimental Measurements and Thermodynamic Modeling of Refrigerant Hydrates Dissociation Conditions, J. Chem. Thermodyn., 2015, vol. 80, pp. 30–40.

    Article  Google Scholar 

  18. Thakre, N. and Jana, A.K., Proposing Ab Initio Assisted Lattice Distortion Theory for Phase Equilibrium: Pure and Mixed Refrigerant Gas Hydrates, AIChE J., 2022, vol. 68, no. 2, p. e17463.

    Article  Google Scholar 

  19. Belosludov, V.R., Subbotin, O.S., Krupskii, D.S., Belosludov, R.V., Kawazoe, Y., and Kudoh, J.I., Physical and Chemical Properties of Gas Hydrates: Theoretical Aspects of Energy Storage Application, Mater. Transact., 2007, vol. 48, no. 4, pp. 704–710.

    Article  Google Scholar 

  20. Bozhko, Y., Subbotin, O.S., Fomin, V.M., Belosludov, V.R., and Kawazoe, Y., Theoretical Investigation of Structures and Compositions of Double Neon-Methane Clathrate Hydrates, Depending on Gas Phase Composition and Pressure, J. Eng. Therm., 2014, vol. 23, no. 1, pp. 9–19.

    Article  Google Scholar 

  21. Subbotin, O.S., Bozhko, Y.Y., Zhdanov, R.K., Gets, K.V., Belosludov, V.R., Belosludov, R.V., and Kawazoe, Y., Ozone Storage Capacity in Clathrate Hydrates Formed by O3 + O2 + N2 + CO2 Gas Mixtures, Phys. Chem. Chem. Phys., 2018, vol. 20, no. 18, pp. 12637–12641.

    Article  Google Scholar 

  22. Belosludov, V.R., Bozhko, Y.Y., Subbotin, O.S., Belosludov, R.V., Zhdanov, R.K., Gets, K.V., and Kawazoe, Y., Influence of N2 on Formation Conditions and Guest Distribution of Mixed CO2 + CH4 Gas Hydrates, Molecules, 2018, vol. 23, no. 12, p. 3336.

    Article  Google Scholar 

  23. Zhdanov, R.K., Gets, K.V., Belosludov, R.V., Subbotin, O.S., Bozhko, Y.Y., and Belosludov, V.R., Theoretical Modeling of the Thermodynamic Properties and the Phase Diagram of Binary Gas Hydrates of Argon and Hydrogen, Fluid Phase Equilibr., 2017, vol. 434, pp. 87–92.

    Article  Google Scholar 

  24. Belosludov, V.R., Lavrentiev, M.Y., and Dyadin, Y.A., Theory of Clathrates, J. Inclus. Phenom. Molec. Recog. Chem., 1991, vol. 10, no. 4, pp. 399–422.

    Article  Google Scholar 

  25. Waals, J.V.D. and Platteeuw, J.C., Clathrate Solutions, Adv. Chem. Phys., 1958, pp. 1–57.

  26. Bernal, J.D. and Fowler, R.H., A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions, J. Chem. Phys., 1933, vol. 1, no. 8, pp. 515–548.

    Article  ADS  Google Scholar 

  27. Kubota, H., Shimizu, K., Tanaka, Y., and Makita, T.J., Dissociation Heat Transfer Characteristics of Methane Hydrates, Chem. Eng. Jpn., 1984, vol. 17, no. 4, pp. 423–429.

    Article  Google Scholar 

  28. Mooijer-van den Heuvel, M.M., Sawirjo, N.M., and Peters, C.J., Influence of Fluoroalkanes on the Phase Behaviour of Methane Gas Hydrate Systems, Fluid Phase Equilibr., 2006, vol. 241, nos. 1/2, pp. 124–137.

    Article  Google Scholar 

  29. Mohammadi, A.H. and Richon, D., Pressure-Temperature Phase Diagrams of Clathrate Hydrates of HFC-134a, HFC-152a and HFC-32, in Procs. of 2010 AIChE Annual Meeting (p. x.), Omnipress, 2010.

  30. Liang, D., Guo, K., Wang, R., and Fan, S., Hydrate Equilibrium Data of 1, 1, 1, 2-tetrafluoroethane (HFC-134a), 1, 1-dichloro-1-fluoroethane (HCFC-141b) and 1, 1-difluoroethane (HFC-152a), Fluid Phase Equilibr., 2001, vol. 187, pp. 61–70.

    Article  Google Scholar 

  31. Hashimoto, S., Makino, T., Inoue, Y., and Ohgaki, K., Three-Phase Equilibrium Relations and Hydrate Dissociation Enthalpies for Hydrofluorocarbon Hydrate Systems: HFC-134a,-125, and-143a Hydrates, J. Chem. Engin. Data, 2010, vol. 55, no. 11, pp. 4951–4955.

    Article  Google Scholar 

  32. Akiya, T., Shimazaki, T., Oowa, M., Matsuo, M., and Yoshida, Y., Formation Conditions of Clathrates between HFC Alternative Refrigerants and Water, Int. J. Thermophys., 1999, vol. 20, no. 6, pp. 1753–1763.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Yu. Bozhko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozhko, Y.Y., Zhdanov, R.K., Gets, K.V. et al. Double Freon Hydrates: Composition and Thermodynamic Properties. J. Engin. Thermophys. 32, 62–68 (2023). https://doi.org/10.1134/S181023282301006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S181023282301006X

Navigation