1932

Abstract

Ultraviolet (UV) irradiation and other genotoxic stresses induce bulky DNA lesions, which threaten genome stability and cell viability. Cells have evolved two main repair pathways to remove such lesions: global genome nucleotide excision repair (GG-NER) and transcription-coupled nucleotide excision repair (TC-NER). The modes by which these subpathways recognize DNA lesions are distinct, but they converge onto the same downstream steps for DNA repair. Here, we first summarize the current understanding of these repair mechanisms, specifically focusing on the roles of stalled RNA polymerase II, Cockayne syndrome protein B (CSB), CSA and UV-stimulated scaffold protein A (UVSSA) in TC-NER. We also discuss the intriguing role of protein ubiquitylation in this process. Additionally, we highlight key aspects of the effect of UV irradiation on transcription and describe the role of signaling cascades in orchestrating this response. Finally, we describe the pathogenic mechanisms underlying xeroderma pigmentosum and Cockayne syndrome, the two main diseases linked to mutations in NER factors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-052621-091205
2023-06-20
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/biochem/92/1/annurev-biochem-052621-091205.html?itemId=/content/journals/10.1146/annurev-biochem-052621-091205&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Dulbecco R. 1949. Reactivation of ultra-violet-inactivated bacteriophage by visible light. Nature 163:4155949–50
    [Google Scholar]
  2. 2.
    Kelner A. 1949. Effect of visible light on the recovery of Streptomyces griseus conidia from ultra-violet irradiation injury. PNAS 35:273–79
    [Google Scholar]
  3. 3.
    Friedberg EC. 2008. A brief history of the DNA repair field. Cell Res 18:13–7
    [Google Scholar]
  4. 4.
    Rasmussen RE, Painter RB. 1964. Evidence for repair of ultra-violet damaged deoxyribonucleic acid in cultured mammalian cells. Nature 203:49521360–62
    [Google Scholar]
  5. 5.
    Cleaver JE. 1968. Defective repair replication of DNA in xeroderma pigmentosum. Nature 218:5142652–56
    [Google Scholar]
  6. 6.
    De Weerd-Kastelein EA, Keijzer W, Bootsma D. 1972. Genetic heterogeneity of xeroderma pigmentosum demonstrated by somatic cell hybridization. Nat. New Biol. 238:8180–83
    [Google Scholar]
  7. 7.
    Westerveld A, Hoeijmakers JHJ, van Duin M, de Wit J, Odijk H et al. 1984. Molecular cloning of a human DNA repair gene. Nature 310:5976425–29
    [Google Scholar]
  8. 8.
    Bootsma D, Hoeijmakers J. 1994. The molecular basis of nucleotide excision repair syndromes. Mutation Res./Fundam. Mol. Mechanisms Mutagenesis 307:115–23
    [Google Scholar]
  9. 9.
    Wood RD, Robins P, Lindahl T. 1988. Complementation of the xeroderma pigmentosum DNA repair defect in cell-free extracts. Cell 53:197–106
    [Google Scholar]
  10. 10.
    Aboussekhra A, Biggerstaff M, Shivji MKK, Vilpo JA, Moncollin V et al. 1995. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80:6859–68
    [Google Scholar]
  11. 11.
    Araújo SJ, Tirode F, Coin F, Pospiech H, Syväoja JE et al. 2000. Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK. Genes Dev 14:3349–59
    [Google Scholar]
  12. 12.
    Mu D, Park C-H, Matsunaga T, Hsu DS, Reardon JT, Sancar A. 1995. Reconstitution of human DNA repair excision nuclease in a highly defined system. J. Biol. Chem. 270:62415–18
    [Google Scholar]
  13. 13.
    Bohr VA, Smith CA, Okumoto DS, Hanawalt PC 1985. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40:2359–69
    [Google Scholar]
  14. 14.
    Mellon I. 1987. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51:2241–49
    [Google Scholar]
  15. 15.
    Mayne LV, Lehmann AR 1982. Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne's syndrome and xeroderma pigmentosum. Cancer Res. 4241473–78
  16. 16.
    Venema J, Mullenders LH, Natarajan AT, van Zeeland AA, Mayne LV. 1990. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. PNAS 87:124707–11
    [Google Scholar]
  17. 17.
    Venema J, van Hoffen A, Natarajan AT, van Zeeland AA, Mullenders LHF. 1990. The residual repair capacity of xeroderma pigmentosum complementation group C fibroblasts is highly specific for transcriptionally active DNA. Nucl. Acids Res. 18:3443–48
    [Google Scholar]
  18. 18.
    Gunz D, Hess MT, Naegeli H. 1996. Recognition of DNA adducts by human nucleotide excision repair. J. Biol. Chem. 271:4125089–98
    [Google Scholar]
  19. 19.
    Keeney S, Chang GJ, Linn S 1993. Characterization of a human DNA damage binding protein implicated in xeroderma pigmentosum E. J. Biol. Chem. 268:2821293–300
    [Google Scholar]
  20. 20.
    Araki M, Masutani C, Takemura M, Uchida A, Sugasawa K et al. 2001. Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. J. Biol. Chem. 276:2218665–72
    [Google Scholar]
  21. 21.
    Legerski R, Peterson C. 1992. Expression cloning of a human DNA repair gene involved in xeroderma pigmentosum group C. Nature 359:639070–73
    [Google Scholar]
  22. 22.
    Masutani C, Sugasawa K, Yanagisawa J, Sonoyama T, Ui M et al. 1994. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J 13:81831–43
    [Google Scholar]
  23. 23.
    Nishi R, Okuda Y, Watanabe E, Mori T, Iwai S et al. 2005. Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein. Mol. Cell Biol. 25:135664–74
    [Google Scholar]
  24. 24.
    Batty D, Rapic’-Otrin V, Levine AS, Wood RD 2000. Stable binding of human XPC complex to irradiated DNA confers strong discrimination for damaged sites. J. Mol. Biol. 300:2275–90
    [Google Scholar]
  25. 25.
    Hwang BJ, Ford JM, Hanawalt PC, Chu G. 1999. Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. PNAS 96:2424–28
    [Google Scholar]
  26. 26.
    Min J-H, Pavletich NP. 2007. Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature 449:7162570–75
    [Google Scholar]
  27. 27.
    Fischer ES, Scrima A, Böhm K, Matsumoto S, Lingaraju GM et al. 2011. The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell 147:51024–39
    [Google Scholar]
  28. 28.
    Scrima A, Koníčková R, Czyzewski BK, Kawasaki Y, Jeffrey PD et al. 2008. Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex. Cell 135:71213–23
    [Google Scholar]
  29. 29.
    Sugasawa K, Ng JMY, Masutani C, Iwai S, van der Spek PJ et al. 1998. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol. Cell 2:2223–32
    [Google Scholar]
  30. 30.
    Cavadini S, Fischer ES, Bunker RD, Potenza A, Lingaraju GM et al. 2016. Cullin-RING ubiquitin E3 ligase regulation by the COP9 signalosome. Nature 531:7596598–603
    [Google Scholar]
  31. 31.
    Groisman R, Polanowska J, Kuraoka I, Sawada J, Saijo M et al. 2003. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113:3357–67
    [Google Scholar]
  32. 32.
    Sugasawa K, Okuda Y, Saijo M, Nishi R, Matsuda N et al. 2005. UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 121:3387–400
    [Google Scholar]
  33. 33.
    Ribeiro-Silva C, Sabatella M, Helfricht A, Marteijn JA, Theil AF et al. 2020. Ubiquitin and TFIIH-stimulated DDB2 dissociation drives DNA damage handover in nucleotide excision repair. Nat. Commun. 11:14868
    [Google Scholar]
  34. 34.
    He J, Zhu Q, Wani G, Sharma N, Han C et al. 2014. Ubiquitin-specific protease 7 regulates nucleotide excision repair through deubiquitinating XPC protein and preventing XPC protein from undergoing ultraviolet light-induced and VCP/p97 protein-regulated proteolysis. J. Biol. Chem. 289:3927278–89
    [Google Scholar]
  35. 35.
    van Cuijk L, van Belle GJ, Turkyilmaz Y, Poulsen SL, Janssens RC et al. 2015. SUMO and ubiquitin-dependent XPC exchange drives nucleotide excision repair. Nat. Commun. 6:17499
    [Google Scholar]
  36. 36.
    Volker M, Moné MJ, Karmakar P, van Hoffen A, Schul W et al. 2001. Sequential assembly of the nucleotide excision repair factors in vivo. Mol. Cell 8:1213–24
    [Google Scholar]
  37. 37.
    Yokoi M, Masutani C, Maekawa T, Sugasawa K, Ohkuma Y, Hanaoka F. 2000. The xeroderma pigmentosum group C protein complex XPC-HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA. J. Biol. Chem. 275:139870–75
    [Google Scholar]
  38. 38.
    Okuda M, Kinoshita M, Kakumu E, Sugasawa K, Nishimura Y. 2015. Structural insight into the mechanism of TFIIH recognition by the acidic string of the nucleotide excision repair factor XPC. Structure 23:101827–37
    [Google Scholar]
  39. 39.
    van Eeuwen T, Shim Y, Kim HJ, Zhao T, Basu S et al. 2021. Cryo-EM structure of TFIIH/Rad4-Rad23-Rad33 in damaged DNA opening in nucleotide excision repair. Nat. Commun. 12:13338
    [Google Scholar]
  40. 40.
    Brueckner F, Hennecke U, Carell T, Cramer P. 2007. CPD damage recognition by transcribing RNA polymerase II. Science 315:5813859–62
    [Google Scholar]
  41. 41.
    Damsma GE, Alt A, Brueckner F, Carell T, Cramer P. 2007. Mechanism of transcriptional stalling at cisplatin-damaged DNA. Nat. Struct. Mol. Biol. 14:121127–33
    [Google Scholar]
  42. 42.
    Troelstra C, van Gool A, de Wit J, Vermeulen W, Bootsma D, Hoeijmakers JHJ. 1992. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell 71:6939–53
    [Google Scholar]
  43. 43.
    Balajee AS, May A, Dianov GL, Friedberg EC, Bohr VA. 1997. Reduced RNA polymerase II transcription in intact and permeabilized Cockayne syndrome group B cells. PNAS 94:94306–11
    [Google Scholar]
  44. 44.
    Selby CP, Sancar A. 1997. Cockayne syndrome group B protein enhances elongation by RNA polymerase II. PNAS 94:2111205–9
    [Google Scholar]
  45. 45.
    van den Boom V, Citterio E, Hoogstraten D, Zotter A, Egly J-M et al. 2004. DNA damage stabilizes interaction of CSB with the transcription elongation machinery. J. Cell Biol. 166:127–36
    [Google Scholar]
  46. 46.
    Xu J, Lahiri I, Wang W, Wier A, Cianfrocco MA et al. 2017. Structural basis for the initiation of eukaryotic transcription-coupled DNA repair. Nature 551:7682653–57
    [Google Scholar]
  47. 47.
    Henning KA, Li L, Iyer N, McDaniel LD, Reagan MS et al. 1995. The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 82:4555–64
    [Google Scholar]
  48. 48.
    van der Weegen Y, Golan-Berman H, Mevissen TET, Apelt K, González-Prieto R et al. 2020. The cooperative action of CSB, CSA, and UVSSA target TFIIH to DNA damage-stalled RNA polymerase II. Nat. Commun. 11:12104
    [Google Scholar]
  49. 49.
    Groisman R, Kuraoka I, Chevallier O, Gaye N, Magnaldo T et al. 2006. CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes Dev 20:111429–34
    [Google Scholar]
  50. 50.
    Bregman DB, Halaban R, van Gool AJ, Henning KA, Friedberg EC, Warren SL. 1996. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. PNAS 93:2111586–90
    [Google Scholar]
  51. 51.
    Kokic G, Wagner FR, Chernev A, Urlaub H, Cramer P. 2021. Structural basis of human transcription-DNA repair coupling. Nature 598:7880368–72
    [Google Scholar]
  52. 52.
    Anindya R, Aygün O, Svejstrup JQ. 2007. Damage-induced ubiquitylation of human RNA polymerase II by the ubiquitin ligase Nedd4, but not Cockayne syndrome proteins or BRCA1. Molecular Cell 28:3386–97
    [Google Scholar]
  53. 53.
    Tufegdžić Vidaković A, Mitter R, Kelly GP, Neumann M, Harreman M et al. 2020. Regulation of the RNAPII pool is integral to the DNA damage response. Cell 180:61245–61.e21
    [Google Scholar]
  54. 54.
    Tufegdzic Vidakovic A, Harreman M, Dirac-Svejstrup AB, Boeing S, Roy A et al. 2019. Analysis of RNA polymerase II ubiquitylation and proteasomal degradation. Methods 159–160:146–56
    [Google Scholar]
  55. 55.
    Nakazawa Y, Sasaki K, Mitsutake N, Matsuse M, Shimada M et al. 2012. Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair. Nat. Genet. 44:5586–92
    [Google Scholar]
  56. 56.
    Schwertman P, Lagarou A, Dekkers DHW, Raams A, van der Hoek AC et al. 2012. UV-sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair. Nat Genet 44:5598–602
    [Google Scholar]
  57. 57.
    Zhang X, Horibata K, Saijo M, Ishigami C, Ukai A et al. 2012. Mutations in UVSSA cause UV-sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair. Nat. Genet. 44:5593–97
    [Google Scholar]
  58. 58.
    Fei J, Chen J. 2012. KIAA1530 protein is recruited by Cockayne syndrome complementation group protein A (CSA) to participate in transcription-coupled repair (TCR). J. Biol. Chem. 287:4235118–26
    [Google Scholar]
  59. 59.
    Boeing S, Williamson L, Encheva V, Gori I, Saunders RE et al. 2016. Multiomic analysis of the UV-induced DNA damage response. Cell Rep 15:71597–1610
    [Google Scholar]
  60. 60.
    Olivieri M, Cho T, Álvarez-Quilón A, Li K, Schellenberg MJ et al. 2020. A genetic map of the response to DNA damage in human cells. Cell 182:2481–96.e21
    [Google Scholar]
  61. 61.
    Prather D, Krogan NJ, Emili A, Greenblatt JF, Winston F 2005. Identification and characterization of Elf1, a conserved transcription elongation factor in Saccharomyces cerevisiae. Mol. Cell Biol. 25:2210122–35
    [Google Scholar]
  62. 62.
    Geijer ME, Zhou D, Selvam K, Steurer B, Mukherjee C et al. 2021. Elongation factor ELOF1 drives transcription-coupled repair and prevents genome instability. Nat. Cell Biol. 23:6608–19
    [Google Scholar]
  63. 63.
    van der Weegen Y, de Lint K, van den Heuvel D, Nakazawa Y, Mevissen TET et al. 2021. ELOF1 is a transcription-coupled DNA repair factor that directs RNA polymerase II ubiquitylation. Nat. Cell Biol. 23:6595–607
    [Google Scholar]
  64. 64.
    Kuraoka I, Ito S, Wada T, Hayashida M, Lee L et al. 2008. Isolation of XAB2 complex involved in pre-mRNA splicing, transcription, and transcription-coupled repair. J. Biol. Chem. 283:2940–50
    [Google Scholar]
  65. 65.
    Nakatsu Y, Asahina H, Citterio E, Rademakers S, Vermeulen W et al. 2000. XAB2, a novel tetratricopeptide repeat protein involved in transcription-coupled DNA repair and transcription. J. Biol. Chem. 275:4534931–37
    [Google Scholar]
  66. 66.
    Compe E, Egly J-M. 2016. Nucleotide excision repair and transcriptional regulation: TFIIH and beyond. Annu. Rev. Biochem. 85:1265–90
    [Google Scholar]
  67. 67.
    Schaeffer L, Roy R, Humbert S, Moncollin V, Vermeulen W et al. 1993. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260:510458–63
    [Google Scholar]
  68. 68.
    Coin F, Oksenych V, Mocquet V, Groh S, Blattner C, Egly JM. 2008. Nucleotide excision repair driven by the dissociation of CAK from TFIIH. Molecular Cell 31:19–20
    [Google Scholar]
  69. 69.
    Svejstrup JQ, Wang Z, Feave WJ, Wu X, Bushnell DA et al. 1995. Different forms of TFIIH for transcription and DNA repair: holo-TFIIH and a nucleotide excision repairosome. Cell 80:121–28
    [Google Scholar]
  70. 70.
    Sandrock B, Egly J-M. 2001. A yeast four-hybrid system identifies Cdk-activating kinase as a regulator of the XPD helicase, a subunit of transcription factor IIH. J. Biol. Chem. 276:3835328–33
    [Google Scholar]
  71. 71.
    Okuda M, Nakazawa Y, Guo C, Ogi T, Nishimura Y. 2017. Common TFIIH recruitment mechanism in global genome and transcription-coupled repair subpathways. Nucleic Acids Res 45:2213043–55
    [Google Scholar]
  72. 72.
    Kokic G, Chernev A, Tegunov D, Dienemann C, Urlaub H, Cramer P. 2019. Structural basis of TFIIH activation for nucleotide excision repair. Nat. Commun. 10:12885
    [Google Scholar]
  73. 73.
    Sugasawa K, Akagi J, Nishi R, Iwai S, Hanaoka F. 2009. Two-step recognition of DNA damage for mammalian nucleotide excision repair: directional binding of the XPC complex and DNA strand scanning. Mol. Cell. 36:4642–53
    [Google Scholar]
  74. 74.
    Mathieu N, Kaczmarek N, Rüthemann P, Luch A, Naegeli H. 2013. DNA quality control by a lesion sensor pocket of the xeroderma pigmentosum group D helicase subunit of TFIIH. Curr. Biol. 23:3204–12
    [Google Scholar]
  75. 75.
    Topolska-Woś AM, Sugitani N, Cordoba JJ, Le Meur KV, Le Meur RA et al. 2020. A key interaction with RPA orients XPA in NER complexes. Nucleic Acids Res 48:42173–88
    [Google Scholar]
  76. 76.
    de Laat WL, Appeldoorn E, Sugasawa K, Weterings E, Jaspers NGJ, Hoeijmakers JHJ. 1998. DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes Dev 12:162598–609
    [Google Scholar]
  77. 77.
    O'Donovan A, Davies AA, Moggs JG, West SC, Wood RD. 1994. XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature 371:6496432–35
    [Google Scholar]
  78. 78.
    Sijbers AM, de Laat WL, Ariza RR, Biggerstaff M, Wei Y-F et al. 1996. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 86:5811–22
    [Google Scholar]
  79. 79.
    Staresincic L, Fagbemi AF, Enzlin JH, Gourdin AM, Wijgers N et al. 2009. Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J 28:81111–20
    [Google Scholar]
  80. 80.
    Ogi T, Limsirichaikul S, Overmeer RM, Volker M, Takenaka K et al. 2010. Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol. Cell. 37:5714–27
    [Google Scholar]
  81. 81.
    Paul-Konietzko K, Thomale J, Arakawa H, Iliakis G. 2015. DNA ligases I and III support nucleotide excision repair in DT40 cells with similar efficiency. Photochem. Photobiol. 91:51173–80
    [Google Scholar]
  82. 82.
    Hu J, Choi J-H, Gaddameedhi S, Kemp MG, Reardon JT, Sancar A. 2013. Nucleotide excision repair in human cells. J. Biol. Chem. 288:2920918–26
    [Google Scholar]
  83. 83.
    Kemp MG, Reardon JT, Lindsey-Boltz LA, Sancar A. 2012. Mechanism of release and fate of excised oligonucleotides during nucleotide excision repair. J. Biol. Chem. 287:2722889–99
    [Google Scholar]
  84. 84.
    Hu J, Adar S, Selby CP, Lieb JD, Sancar A. 2015. Genome-wide analysis of human global and transcription-coupled excision repair of UV damage at single-nucleotide resolution. Genes Dev 29:9948–60
    [Google Scholar]
  85. 85.
    van Toorn M, Turkyilmaz Y, Han S, Zhou D, Kim H-S et al. 2022. Active DNA damage eviction by HLTF stimulates nucleotide excision repair. Mol. Cell. 82:71343–58.e8
    [Google Scholar]
  86. 86.
    Gregersen LH, Svejstrup JQ. 2018. The cellular response to transcription-blocking DNA damage. Trends Biochem. Sci. 43:5327–41
    [Google Scholar]
  87. 87.
    Wilson MD, Harreman M, Svejstrup JQ. 2013. Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. Biochim. Biophys. Acta Gene Regul. Mech. 1829:1151–57
    [Google Scholar]
  88. 88.
    Nakazawa Y, Hara Y, Oka Y, Komine O, van den Heuvel D et al. 2020. Ubiquitination of DNA damage-stalled RNAPII promotes transcription-coupled repair. Cell 180:61228–44.e24
    [Google Scholar]
  89. 89.
    Beaudenon SL, Huacani MR, Wang G, McDonnell DP, Huibregtse JM. 1999. Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol. Cell Biol. 19:106972–79
    [Google Scholar]
  90. 90.
    Ribar B, Prakash L, Prakash S. 2006. Requirement of ELC1 for RNA polymerase II polyubiquitylation and degradation in response to DNA damage in Saccharomyces cerevisiae. Mol. Cell Biol. 26:113999–4005
    [Google Scholar]
  91. 91.
    Ribar B, Prakash L, Prakash S. 2007. ELA1 and CUL3 are required along with ELC1 for RNA polymerase II polyubiquitylation and degradation in DNA-damaged yeast cells. Mol. Cell Biol. 27:83211–16
    [Google Scholar]
  92. 92.
    Yasukawa T, Kamura T, Kitajima S, Conaway RC, Conaway JW, Aso T. 2008. Mammalian Elongin A complex mediates DNA-damage-induced ubiquitylation and degradation of Rpb1. EMBO J 27:243256–66
    [Google Scholar]
  93. 93.
    Harreman M, Taschner M, Sigurdsson S, Anindya R, Reid J et al. 2009. Distinct ubiquitin ligases act sequentially for RNA polymerase II polyubiquitylation. PNAS 106:4920705–10
    [Google Scholar]
  94. 94.
    Woudstra EC, Gilbert C, Fellows J, Jansen L, Brouwer J et al. 2002. A Rad26–Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature 415:6874929–33
    [Google Scholar]
  95. 95.
    Somesh BP, Reid J, Liu W-F, Søgaard TMM, Erdjument-Bromage H et al. 2005. Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest. Cell 121:6913–23
    [Google Scholar]
  96. 96.
    Wilson MD, Harreman M, Taschner M, Reid J, Walker J et al. 2013. Proteasome-mediated processing of Def1, a critical step in the cellular response to transcription stress. Cell 154:5983–95
    [Google Scholar]
  97. 97.
    Herlihy AE, Boeing S, Weems JC, Walker J, Dirac-Svejstrup AB et al. 2022. UBAP2/UBAP2L regulate UV-induced ubiquitylation of RNA polymerase II and are the human orthologues of yeast Def1. DNA Repair 115:103343
    [Google Scholar]
  98. 98.
    Kuznetsova AV, Meller J, Schnell PO, Nash JA, Ignacak ML et al. 2003. von Hippel-Lindau protein binds hyperphosphorylated large subunit of RNA polymerase II through a proline hydroxylation motif and targets it for ubiquitination. PNAS 100:52706–11
    [Google Scholar]
  99. 99.
    Lommel L, Bucheli ME, Sweder KS. 2000. Transcription-coupled repair in yeast is independent from ubiquitylation of RNA pol II: implications for Cockayne's syndrome. PNAS 97:169088–92
    [Google Scholar]
  100. 100.
    Weems JC, Slaughter BD, Unruh JR, Boeing S, Hall SM et al. 2017. Cockayne syndrome B protein regulates recruitment of the Elongin A ubiquitin ligase to sites of DNA damage. J. Biol. Chem. 292:166431–37
    [Google Scholar]
  101. 101.
    Hara R, Selby CP, Liu M, Price DH, Sancar A. 1999. Human transcription release factor 2 dissociates RNA polymerases I and II stalled at a cyclobutane thymine dimer. J. Biol. Chem. 274:3524779–86
    [Google Scholar]
  102. 102.
    Elrod ND, Henriques T, Huang K-L, Tatomer DC, Wilusz JE et al. 2019. The integrator complex attenuates promoter-proximal transcription at protein-coding genes. Mol. Cell. 76:5738–52.e7
    [Google Scholar]
  103. 103.
    Chiou Y-Y, Hu J, Sancar A, Selby CP. 2018. RNA polymerase II is released from the DNA template during transcription-coupled repair in mammalian cells. J. Biol. Chem. 293:72476–86
    [Google Scholar]
  104. 104.
    Poulsen SL, Hansen RK, Wagner SA, van Cuijk L, van Belle GJ et al. 2013. RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response. J. Cell Biol. 201:6797–807
    [Google Scholar]
  105. 105.
    Sin Y, Tanaka K, Saijo M. 2016. The C-terminal region and SUMOylation of Cockayne syndrome group B protein play critical roles in transcription-coupled nucleotide excision repair. J. Biol. Chem. 291:31387–97
    [Google Scholar]
  106. 106.
    Anindya R, Mari P-O, Kristensen U, Kool H, Giglia-Mari G et al. 2010. A ubiquitin-binding domain in Cockayne syndrome B required for transcription-coupled nucleotide excision repair. Mol. Cell. 38:5637–48
    [Google Scholar]
  107. 107.
    Chen L, Shinde U, Ortolan TG, Madura K. 2001. Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly. EMBO Rep 2:10933–38
    [Google Scholar]
  108. 108.
    Engelberg D, Klein C, Martinetto H, Struhl K, Karin M. 1994. The UV response involving the ras signaling pathway and AP-1 transcription factors is conserved between yeast and mammals. Cell 77:3381–90
    [Google Scholar]
  109. 109.
    Zou L, Elledge SJ. 2003. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:56251542–48
    [Google Scholar]
  110. 110.
    Herrlich P, Sachsenmaier C, Radler-Pohl A, Gebel S, Blattner C, Rahmsdorf HJ. 1994. The mammalian UV response: mechanism of DNA damage induced gene expression. Adv. Enzyme Regul. 34:381–95
    [Google Scholar]
  111. 111.
    Stein B, Rahmsdorf HJ, Steffen A, Litfin M, Herrlich P. 1989. UV-induced DNA damage is an intermediate step in UV-induced expression of human immunodeficiency virus type 1, collagenase, c-fos, and metallothionein. Mol. Cell Biol. 9:115169–81
    [Google Scholar]
  112. 112.
    Schreiber M, Baumann B, Cotten M, Angel P, Wagner EF. 1995. Fos is an essential component of the mammalian UV response. EMBO J 14:215338–49
    [Google Scholar]
  113. 113.
    Devary Y, Rosette C, Didonato J, Karin M 1993. NF-κB activation by ultraviolet light not dependent on a nuclear signal. Science 261:51271442–45
    [Google Scholar]
  114. 114.
    Price MA, Cruzalegui FH, Treisman R. 1996. The p38 and ERK MAP kinase pathways cooperate to activate ternary complex factors and c-fos transcription in response to UV light. EMBO J 15:236552–63
    [Google Scholar]
  115. 115.
    Herr I, van Dam H, Angel P 1994. Binding of promoter-associated AP-1 is not altered during induction and subsequent repression of the c-jun promoter by TPA and UV irradiation. Carcinogenesis 15:61105–13
    [Google Scholar]
  116. 116.
    Rozek D, Pfeifer GP. 1993. In vivo protein-DNA interactions at the c-jun promoter: preformed complexes mediate the UV response. Mol. Cell Biol. 13:95490–99
    [Google Scholar]
  117. 117.
    Devary Y, Gottlieb RA, Smeal T, Karin M. 1992. The mammalian ultraviolet response is triggered by activation of Src tyrosine kinases. Cell 71:71081–91
    [Google Scholar]
  118. 118.
    Radler-Pohl A, Sachsenmaier C, Gebel S, Auer HP, Bruder JT et al. 1993. UV-induced activation of AP-1 involves obligatory extranuclear steps including Raf-1 kinase. EMBO J 12:31005–12
    [Google Scholar]
  119. 119.
    Krämer M, Sachsenmaier C, Herrlich P, Rahmsdorf HJ. 1993. UV irradiation-induced interleukin-1 and basic fibroblast growth factor synthesis and release mediate part of the UV response. J. Biol. Chem. 268:96734–41
    [Google Scholar]
  120. 120.
    Sachsenmaier C, Radler-Pohl A, Zinck R, Nordheim A, Herrlich P, Rahmsdorf HJ. 1994. Involvement of growth factor receptors in the mammalian UVC response. Cell 78:6963–72
    [Google Scholar]
  121. 121.
    Schorpp M, Mallick U, Rahmsdorf HJ, Herrlich P. 1984. UV-induced extracellular factor from human fibroblasts communicates the UV response to nonirradiated cells. Cell 37:3861–68
    [Google Scholar]
  122. 122.
    Dérijard B, Hibi M, Wu IH, Barrett T, Su B et al. 1994. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76:61025–37
    [Google Scholar]
  123. 123.
    Kulms D, Schwarz T. 2002. Mechanisms of UV-induced signal transduction. J. Dermatol. 29:4189–96
    [Google Scholar]
  124. 124.
    Blattner C, Bender K, Herrlich P, Rahmsdorf HJ. 1998. Photoproducts in transcriptionally active DNA induce signal transduction to the delayed U.V.-responsive genes for collagenase and metallothionein. Oncogene 16:222827–34
    [Google Scholar]
  125. 125.
    Derheimer FA, O'Hagan HM, Krueger HM, Hanasoge S, Paulsen MT, Ljungman M 2007. RPA and ATR link transcriptional stress to p53. PNAS 104:3112778–83
    [Google Scholar]
  126. 126.
    Sikorski TW, Ficarro SB, Holik J, Kim T, Rando OJ et al. 2011. Sub1 and RPA associate with RNA polymerase II at different stages of transcription. Mol. Cell. 44:3397–409
    [Google Scholar]
  127. 127.
    Tresini M, Warmerdam DO, Kolovos P, Snijder L, Vrouwe MG et al. 2015. The core spliceosome as target and effector of non-canonical ATM signalling. Nature 523:755853–58
    [Google Scholar]
  128. 128.
    Hung K-F, Sidorova JM, Nghiem P, Kawasumi M. 2020. The 6–4 photoproduct is the trigger of UV-induced replication blockage and ATR activation. PNAS 117:2312806–16
    [Google Scholar]
  129. 129.
    Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER, Hurov KE et al. 2007. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316:58281160–66
    [Google Scholar]
  130. 130.
    Stokes MP, Rush J, MacNeill J, Ren JM, Sprott K et al. 2007. Profiling of UV-induced ATM/ATR signaling pathways. PNAS 104:5019855–60
    [Google Scholar]
  131. 131.
    Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D et al. 2000. Chk1 is an essential kinase that is regulated by Atr and required for the G2/M DNA damage checkpoint. Genes Dev 14:121448–59
    [Google Scholar]
  132. 132.
    Hall-Jackson CA, Cross DA, Morrice N, Smythe C. 1999. ATR is a caffeine-sensitive, DNA-activated protein kinase with a substrate specificity distinct from DNA-PK. Oncogene 18:486707–13
    [Google Scholar]
  133. 133.
    Lakin ND, Hann BC, Jackson SP. 1999. The ataxia-telangiectasia related protein ATR mediates DNA-dependent phosphorylation of p53. Oncogene 18:273989–95
    [Google Scholar]
  134. 134.
    Shieh SY, Ahn J, Tamai K, Taya Y, Prives C. 2000. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 14:3289–300
    [Google Scholar]
  135. 135.
    Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA et al. 1999. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 13:2152–57
    [Google Scholar]
  136. 136.
    Shinozaki T, Nota A, Taya Y, Okamoto K. 2003. Functional role of Mdm2 phosphorylation by ATR in attenuation of p53 nuclear export. Oncogene 22:558870–80
    [Google Scholar]
  137. 137.
    McKay BC, Stubbert LJ, Fowler CC, Smith JM, Cardamore RA, Spronck JC. 2004. Regulation of ultraviolet light-induced gene expression by gene size. PNAS 101:176582–86
    [Google Scholar]
  138. 138.
    Vrouwe MG, Pines A, Overmeer RM, Hanada K, Mullenders LHF. 2011. UV-induced photolesions elicit ATR-kinase-dependent signaling in non-cycling cells through nucleotide excision repair-dependent and -independent pathways. J. Cell Sci. 124:Part 3435–46
    [Google Scholar]
  139. 139.
    Rockx DA, Mason R, van Hoffen A, Barton MC, Citterio E et al. 2000. UV-induced inhibition of transcription involves repression of transcription initiation and phosphorylation of RNA polymerase II. PNAS 97:1910503–8
    [Google Scholar]
  140. 140.
    Proietti-De-Santis L, Drané P, Egly J-M. 2006. Cockayne syndrome B protein regulates the transcriptional program after UV irradiation. EMBO J 25:91915–23
    [Google Scholar]
  141. 141.
    Nakazawa Y, Yamashita S, Lehmann AR, Ogi T. 2010. A semi-automated non-radioactive system for measuring recovery of RNA synthesis and unscheduled DNA synthesis using ethynyluracil derivatives. DNA Repair 9:5506–16
    [Google Scholar]
  142. 142.
    Andrade-Lima LC, Veloso A, Paulsen MT, Menck CFM, Ljungman M. 2015. DNA repair and recovery of RNA synthesis following exposure to ultraviolet light are delayed in long genes. Nucleic Acids Res 43:52744–56
    [Google Scholar]
  143. 143.
    Williamson L, Saponaro M, Boeing S, East P, Mitter R et al. 2017. UV irradiation induces a non-coding RNA that functionally opposes the protein encoded by the same gene. Cell 168:5843–55.e13
    [Google Scholar]
  144. 144.
    Lavigne MD, Konstantopoulos D, Ntakou-Zamplara KZ, Liakos A, Fousteri M. 2017. Global unleashing of transcription elongation waves in response to genotoxic stress restricts somatic mutation rate. Nat. Commun. 8:12076
    [Google Scholar]
  145. 145.
    Liakos A, Konstantopoulos D, Lavigne MD, Fousteri M. 2020. Continuous transcription initiation guarantees robust repair of all transcribed genes and regulatory regions. Nat. Commun. 11:1916
    [Google Scholar]
  146. 146.
    Muñoz MJ, Pérez Santangelo MS, Paronetto MP, de la Mata M, Pelisch F et al. 2009. DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation. Cell 137:4708–20
    [Google Scholar]
  147. 147.
    Sanchez A, De Vivo A, Uprety N, Kim J, Stevens SM, Kee Y. 2016. BMI1-UBR5 axis regulates transcriptional repression at damaged chromatin. PNAS 113:4011243–48
    [Google Scholar]
  148. 148.
    van den Heuvel D, Spruijt CG, González-Prieto R, Kragten A, Paulsen MT et al. 2021. A CSB-PAF1C axis restores processive transcription elongation after DNA damage repair. Nat. Commun. 12:11342
    [Google Scholar]
  149. 149.
    Noe Gonzalez M, Blears D, Svejstrup JQ 2021. Causes and consequences of RNA polymerase II stalling during transcript elongation. Nat. Rev. Mol. Cell Biol. 22:13–21
    [Google Scholar]
  150. 150.
    Studniarek C, Tellier M, Martin PGP, Murphy S, Kiss T, Egloff S. 2021. The 7SK/P-TEFb snRNP controls ultraviolet radiation-induced transcriptional reprogramming. Cell Rep 35:2108965
    [Google Scholar]
  151. 151.
    Borisova ME, Voigt A, Tollenaere MAX, Sahu SK, Juretschke T et al. 2018. p38-MK2 signaling axis regulates RNA metabolism after UV-light-induced DNA damage. Nat. Commun. 9:11017
    [Google Scholar]
  152. 152.
    Bugai A, Quaresma AJC, Friedel CC, Lenasi T, Düster R et al. 2019. P-TEFb activation by RBM7 shapes a pro-survival transcriptional response to genotoxic stress. Mol. Cell. 74:2254–67.e10
    [Google Scholar]
  153. 153.
    Epanchintsev A, Costanzo F, Rauschendorf M-A, Caputo M, Ye T et al. 2017. Cockayne's syndrome A and B proteins regulate transcription arrest after genotoxic stress by promoting ATF3 degradation. Mol. Cell 68:61054–66.e6
    [Google Scholar]
  154. 154.
    Kristensen U, Epanchintsev A, Rauschendorf M-A, Laugel V, Stevnsner T et al. 2013. Regulatory interplay of Cockayne syndrome B ATPase and stress-response gene ATF3 following genotoxic stress. PNAS 110:25E2261–70
    [Google Scholar]
  155. 155.
    Vichi P, Coin F, Renaud JP, Vermeulen W, Hoeijmakers JH et al. 1997. Cisplatin- and UV-damaged DNA lure the basal transcription factor TFIID/TBP. EMBO J 16:247444–56
    [Google Scholar]
  156. 156.
    Heine GF, Horwitz AA, Parvin JD. 2008. Multiple mechanisms contribute to inhibit transcription in response to DNA damage. J. Biol. Chem. 283:159555–61
    [Google Scholar]
  157. 157.
    Steurer B, Janssens RC, Geijer ME, Aprile-Garcia F, Geverts B et al. 2022. DNA damage-induced transcription stress triggers the genome-wide degradation of promoter-bound Pol II. Nat. Commun. 13:13624
    [Google Scholar]
  158. 158.
    Li S, Smerdon MJ. 2002. Rpb4 and Rpb9 mediate subpathways of transcription-coupled DNA repair in Saccharomyces cerevisiae. EMBO J 21:215921–29
    [Google Scholar]
  159. 159.
    Mourgues S, Gautier V, Lagarou A, Bordier C, Mourcet A et al. 2013. ELL, a novel TFIIH partner, is involved in transcription restart after DNA repair. PNAS 110:4417927–32
    [Google Scholar]
  160. 160.
    Adam S, Polo SE, Almouzni G. 2013. Transcription recovery after DNA damage requires chromatin priming by the H3.3 histone chaperone HIRA. Cell 155:194–106
    [Google Scholar]
  161. 161.
    Bouvier D, Ferrand J, Chevallier O, Paulsen MT, Ljungman M, Polo SE. 2021. Dissecting regulatory pathways for transcription recovery following DNA damage reveals a non-canonical function of the histone chaperone HIRA. Nat. Commun. 12:13835
    [Google Scholar]
  162. 162.
    Dinant C, Ampatziadis-Michailidis G, Lans H, Tresini M, Lagarou A et al. 2013. Enhanced chromatin dynamics by FACT promotes transcriptional restart after UV-induced DNA damage. Mol. Cell. 51:4469–79
    [Google Scholar]
  163. 163.
    Oksenych V, Zhovmer A, Ziani S, Mari P-O, Eberova J et al. 2013. Histone methyltransferase DOT1L drives recovery of gene expression after a genotoxic attack. PLOS Genet 9:7e1003611
    [Google Scholar]
  164. 164.
    Vélez-Cruz R, Zadorin AS, Coin F, Egly J-M. 2013. Sirt1 suppresses RNA synthesis after UV irradiation in combined xeroderma pigmentosum group D/Cockayne syndrome (XP-D/CS) cells. PNAS 110:3E212–20
    [Google Scholar]
  165. 165.
    Shkreta L, Toutant J, Durand M, Manley JL, Chabot B. 2016. SRSF10 connects DNA damage to the alternative splicing of transcripts encoding apoptosis, cell-cycle control, and DNA repair factors. Cell Rep 17:81990–2003
    [Google Scholar]
  166. 166.
    Muñoz MJ, Nieto Moreno N, Giono LE, Cambindo Botto AE, Dujardin G et al. 2017. Major roles for pyrimidine dimers, nucleotide excision repair, and ATR in the alternative splicing response to UV irradiation. Cell Rep. 18:122868–79
    [Google Scholar]
  167. 167.
    Kornblihtt AR, Schor IE, Alló M, Dujardin G, Petrillo E, Muñoz MJ. 2013. Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat. Rev. Mol. Cell Biol. 14:3153–65
    [Google Scholar]
  168. 168.
    Paronetto MP, Miñana B, Valcárcel J. 2011. The Ewing sarcoma protein regulates DNA damage-induced alternative splicing. Mol. Cell. 43:3353–68
    [Google Scholar]
  169. 169.
    Shomron N, Alberstein M, Reznik M, Ast G. 2005. Stress alters the subcellular distribution of hSlu7 and thus modulates alternative splicing. J. Cell Sci. 118:Part 61151–59
    [Google Scholar]
  170. 170.
    van der Houven van Oordt W, Diaz-Meco MT, Lozano J, Krainer AR, Moscat J, Cáceres JF. 2000. The MKK3/6-p38–signaling cascade alters the subcellular distribution of hnRNP A1 and modulates alternative splicing regulation. J. Cell Biol. 149:2307–16
    [Google Scholar]
  171. 171.
    Suzumura H, Arisaka O. 2010. Cerebro-oculo-facio-skeletal syndrome. Adv. Exp. Med. Biol. 685:210–14
    [Google Scholar]
  172. 172.
    Fassihi H, Sethi M, Fawcett H, Wing J, Chandler N et al. 2016. Deep phenotyping of 89 xeroderma pigmentosum patients reveals unexpected heterogeneity dependent on the precise molecular defect. PNAS 113:9E1236–45
    [Google Scholar]
  173. 173.
    Stefanini M, Botta E, Lanzafame M, Orioli D. 2010. Trichothiodystrophy: from basic mechanisms to clinical implications. DNA Repair 9:12–10
    [Google Scholar]
  174. 174.
    Laugel V. 2013. Cockayne syndrome: the expanding clinical and mutational spectrum. Mechanisms Ageing Dev 134:5161–70
    [Google Scholar]
  175. 175.
    Spivak G, Hanawalt PC. 2015. Photosensitive human syndromes. Mutat. Res. 776:24–30
    [Google Scholar]
  176. 176.
    DiGiovanna JJ, Kraemer KH. 2012. Shining a light on xeroderma pigmentosum. J. Investig. Dermatol. 132:3, Part 2785–96
    [Google Scholar]
  177. 177.
    Wang Y, Chakravarty P, Ranes M, Kelly G, Brooks PJ et al. 2014. Dysregulation of gene expression as a cause of Cockayne syndrome neurological disease. PNAS 111:4014454–59
    [Google Scholar]
  178. 178.
    Wang Y, Jones-Tabah J, Chakravarty P, Stewart A, Muotri A et al. 2016. Pharmacological bypass of Cockayne syndrome B function in neuronal differentiation. Cell Rep 14:112554–61
    [Google Scholar]
  179. 179.
    Brooks PJ. 2013. Blinded by the UV light: how the focus on transcription-coupled NER has distracted from understanding the mechanisms of Cockayne syndrome neurologic disease. DNA Repair 12:8656–71
    [Google Scholar]
  180. 180.
    Itoh M, Hayashi M, Shioda K, Minagawa M, Isa F et al. 1999. Neurodegeneration in hereditary nucleotide repair disorders. Brain Dev 21:5326–33
    [Google Scholar]
  181. 181.
    Mulderrig L, Garaycoechea JI, Tuong ZK, Millington CL, Dingler FA et al. 2021. Aldehyde-driven transcriptional stress triggers an anorexic DNA damage response. Nature 600:7887158–63
    [Google Scholar]
  182. 182.
    Dianov GL, Houle J-F, Iyer N, Bohr VA, Friedberg EC. 1997. Reduced RNA polymerase II transcription in extracts of Cockayne syndrome and xeroderma pigmentosum/Cockayne syndrome cells. Nucleic Acids Res 25:183636–42
    [Google Scholar]
  183. 183.
    Hwang JR, Moncollin V, Vermeulen W, Seroz T, van Vuuren H et al. 1996. A 3′ → 5′ XPB helicase defect in repair/transcription factor TFIIH of xeroderma pigmentosum group B affects both DNA repair and transcription. J. Biol. Chem. 271:2715898–904
    [Google Scholar]
  184. 184.
    Newman JC, Bailey AD, Weiner AM. 2006. Cockayne syndrome group B protein (CSB) plays a general role in chromatin maintenance and remodeling. PNAS 103:259613–18
    [Google Scholar]
  185. 185.
    Vessoni AT, Herai RH, Karpiak JV, Leal AMS, Trujillo CA et al. 2016. Cockayne syndrome-derived neurons display reduced synapse density and altered neural network synchrony. Hum. Mol. Genet. 25:71271–80
    [Google Scholar]
  186. 186.
    Ciaffardini F, Nicolai S, Caputo M, Canu G, Paccosi E et al. 2014. The cockayne syndrome B protein is essential for neuronal differentiation and neuritogenesis. Cell Death Dis 5:5e1268
    [Google Scholar]
  187. 187.
    Wu Z, Zhu X, Yu Q, Xu Y, Wang Y. 2019. Multisystem analyses of two Cockayne syndrome associated proteins CSA and CSB reveal shared and unique functions. DNA Repair 83:102696
    [Google Scholar]
  188. 188.
    Haijes HA, Koster MJE, Rehmann H, Li D, Hakonarson H et al. 2019. De novo heterozygous POLR2A variants cause a neurodevelopmental syndrome with profound infantile-onset hypotonia. Am. J. Hum. Genet. 105:2283–301
    [Google Scholar]
  189. 189.
    Wozniak KJ, Simmons LA. 2022. Bacterial DNA excision repair pathways. Nat. Rev. Microbiol. 20:465–77
    [Google Scholar]
  190. 190.
    Bharati BK, Gowder M, Zheng F, Alzoubi K, Svetlov V et al. 2022. Crucial role and mechanism of transcription-coupled DNA repair in bacteria. Nature 604:7904152–59
    [Google Scholar]
  191. 191.
    Dammann R, Pfeifer GP. 1997. Lack of gene- and strand-specific DNA repair in RNA polymerase III-transcribed human tRNA genes. Mol. Cell Biol. 17:1219–29
    [Google Scholar]
  192. 192.
    Yang Y, Hu J, Selby CP, Li W, Yimit A et al. 2019. Single-nucleotide resolution analysis of nucleotide excision repair of ribosomal DNA in humans and mice. J. Biol. Chem. 294:1210–17
    [Google Scholar]
  193. 193.
    Daniel L, Cerutti E, Donnio L-M, Nonnekens J, Carrat C et al. 2018. Mechanistic insights in transcription-coupled nucleotide excision repair of ribosomal DNA. PNAS 115:29E6770–79
    [Google Scholar]
  194. 194.
    Abraham KJ, Khosraviani N, Chan JNY, Gorthi A, Samman A et al. 2020. Nucleolar RNA polymerase II drives ribosome biogenesis. Nature 585:7824298–302
    [Google Scholar]
  195. 195.
    Prakash S, Prakash L. 2000. Nucleotide excision repair in yeast. Mutation Res./Fundam. Mol. Mechanisms Mutagenesis 451:1–213–24
    [Google Scholar]
  196. 196.
    Mota MBS, Carvalho MA, Monteiro ANA, Mesquita RD. 2019. DNA damage response and repair in perspective: Aedes aegypti, Drosophila melanogaster and Homo sapiens. Parasites Vectors 12:1533
    [Google Scholar]
  197. 197.
    Deger N, Yang Y, Lindsey-Boltz LA, Sancar A, Selby CP. 2019. Drosophila, which lacks canonical transcription-coupled repair proteins, performs transcription-coupled repair. J. Biol. Chem. 294:4818092–98
    [Google Scholar]
  198. 198.
    Deger N, Cao X, Selby CP, Gulec S, Kawara H et al. 2022. CSB-independent, XPC-dependent transcription-coupled repair in Drosophila. PNAS 119:9e2123163119
    [Google Scholar]
  199. 199.
    Jiang Y, Liu M, Spencer CA, Price DH. 2004. Involvement of transcription termination factor 2 in mitotic repression of transcription elongation. Mol. Cell. 14:3375–86
    [Google Scholar]
  200. 200.
    Groh M, Albulescu LO, Cristini A, Gromak N. 2017. Senataxin: genome guardian at the interface of transcription and neurodegeneration. J. Mol. Biol. 429:213181–95
    [Google Scholar]
  201. 201.
    Porrua O, Libri D. 2013. A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast. Nat. Struct. Mol. Biol. 20:7884–91
    [Google Scholar]
  202. 202.
    Kumar N, Raja S, Van Houten B. 2020. The involvement of nucleotide excision repair proteins in the removal of oxidative DNA damage. Nucleic Acids Res 48:2011227–43
    [Google Scholar]
  203. 203.
    Guo J, Hanawalt PC, Spivak G. 2013. Comet-FISH with strand-specific probes reveals transcription-coupled repair of 8-oxoGuanine in human cells. Nucleic Acids Res 41:167700–12
    [Google Scholar]
  204. 204.
    Menoni H, Wienholz F, Theil AF, Janssens RC, Lans H et al. 2018. The transcription-coupled DNA repair-initiating protein CSB promotes XRCC1 recruitment to oxidative DNA damage. Nucleic Acids Res 46:157747–56
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-052621-091205
Loading
/content/journals/10.1146/annurev-biochem-052621-091205
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error