1932

Abstract

Proper eye structure is essential for visual function: Multiple essential eye tissues must take shape and assemble into a precise three-dimensional configuration. Accordingly, alterations to eye structure can lead to pathological conditions of visual impairment. Changes in eye shape can also be adaptive over evolutionary time. Eye structure is first established during development with the formation of the optic cup, which contains the neural retina, retinal pigment epithelium, and lens. This crucial yet deceptively simple hemispherical structure lays the foundation for all later elaborations of the eye. Building on descriptions of the embryonic eye that started with hand drawings and micrographs, the field is beginning to identify mechanisms driving dynamic changes in three-dimensional cell and tissue shape. A combination of molecular genetics, imaging, and pharmacological approaches is defining connections among transcription factors, signaling pathways, and the intracellular machinery governing the emergence of this crucial structure.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-100720-111125
2023-09-15
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/vision/9/1/annurev-vision-100720-111125.html?itemId=/content/journals/10.1146/annurev-vision-100720-111125&mimeType=html&fmt=ahah

Literature Cited

  1. Adler R, Belecky-Adams TL. 2002. The role of bone morphogenetic proteins in the differentiation of the ventral optic cup. Development 129:3161–71
    [Google Scholar]
  2. ALSomiry AS, Gregory-Evans CY, Gregory-Evans K. 2019. An update on the genetics of ocular coloboma. Hum. Genet. 138:865–80
    [Google Scholar]
  3. Altmann CR, Chow RL, Lang RA, Hemmati-Brivanlou A. 1997. Lens induction by Pax-6 in Xenopus laevis. Dev. Biol. 185:119–23
    [Google Scholar]
  4. Ashery-Padan R, Marquardt T, Zhou X, Gruss P. 2000. Pax6 activity in the lens primordium is required for lens formation and for correct placement of a single retina in the eye. Genes Dev. 14:2701–11
    [Google Scholar]
  5. Azuma N, Yamaguchi Y, Handa H, Tadokoro K, Asaka A et al. 2003. Mutations of the PAX6 gene detected in patients with a variety of optic-nerve malformations. Am. J. Hum. Genet. 72:1565–70
    [Google Scholar]
  6. Bakrania P, Efthymiou M, Klein JC, Salt A, Bunyan DJ et al. 2008. Mutations in BMP4 cause eye, brain, and digit developmental anomalies: overlap between the BMP4 and hedgehog signaling pathways. Am. J. Hum. Genet. 82:304–19
    [Google Scholar]
  7. Barbieri AM, Broccoli V, Bovolenta P, Alfano G, Marchitiello A et al. 2002. Vax2 inactivation in mouse determines alteration of the eye dorsal-ventral axis, misrouting of the optic fibres and eye coloboma. Development 129:805–13
    [Google Scholar]
  8. Bassett EA, Williams T, Zacharias AL, Gage PJ, Fuhrmann S, West-Mays JA. 2010. AP-2alpha knockout mice exhibit optic cup patterning defects and failure of optic stalk morphogenesis. Hum. Mol. Genet. 19:1791–804
    [Google Scholar]
  9. Bernstein CS, Anderson MT, Gohel C, Slater K, Gross JM, Agarwala S. 2018. The cellular bases of choroid fissure formation and closure. Dev. Biol. 440:137–51
    [Google Scholar]
  10. Borges RM, Lamers ML, Forti FL, Santos MF, Yan CY. 2011. Rho signaling pathway and apical constriction in the early lens placode. Genesis 49:368–79
    [Google Scholar]
  11. Brown JD, Dutta S, Bharti K, Bonner RF, Munson PJ et al. 2009. Expression profiling during ocular development identifies 2 Nlz genes with a critical role in optic fissure closure. PNAS 106:1462–67
    [Google Scholar]
  12. Brown KE, Keller PJ, Ramialison M, Rembold M, Stelzer EH et al. 2010. Nlcam modulates midline convergence during anterior neural plate morphogenesis. Dev. Biol. 339:14–25
    [Google Scholar]
  13. Bryan CD, Casey MA, Pfeiffer RL, Jones BW, Kwan KM. 2020. Optic cup morphogenesis requires neural crest-mediated basement membrane assembly. Development 147:dev181420
    [Google Scholar]
  14. Bryan CD, Chien CB, Kwan KM. 2016. Loss of laminin alpha 1 results in multiple structural defects and divergent effects on adhesion during vertebrate optic cup morphogenesis. Dev. Biol. 416:324–37
    [Google Scholar]
  15. Buono L, Corbacho J, Naranjo S, Almuedo-Castillo M, Moreno-Marmol T et al. 2021. Analysis of gene network bifurcation during optic cup morphogenesis in zebrafish. Nat. Commun. 12:3866
    [Google Scholar]
  16. Canto-Soler MV, Adler R. 2006. Optic cup and lens development requires Pax6 expression in the early optic vesicle during a narrow time window. Dev. Biol. 294:119–32
    [Google Scholar]
  17. Cao M, Ouyang J, Guo J, Lin S, Chen S. 2018. Metalloproteinase Adamts16 is required for proper closure of the optic fissure. Investig. Ophthalmol. Vis. Sci. 59:1167–77
    [Google Scholar]
  18. Carpenter AC, Smith AN, Wagner H, Cohen-Tayar Y, Rao S et al. 2015. Wnt ligands from the embryonic surface ectoderm regulate “bimetallic strip” optic cup morphogenesis in mouse. Development 142:972–82
    [Google Scholar]
  19. Carrara N, Weaver M, Piedade WP, Vocking O, Famulski JK. 2019. Temporal characterization of optic fissure basement membrane composition suggests nidogen may be an initial target of remodeling. Dev. Biol. 452:43–54
    [Google Scholar]
  20. Cavodeassi F, Carreira-Barbosa F, Young RM, Concha ML, Allende ML et al. 2005. Early stages of zebrafish eye formation require the coordinated activity of Wnt11, Fz5, and the Wnt/beta-catenin pathway. Neuron 47:43–56
    [Google Scholar]
  21. Cavodeassi F, Ivanovitch K, Wilson SW. 2013. Eph/Ephrin signalling maintains eye field segregation from adjacent neural plate territories during forebrain morphogenesis. Development 140:4193–202
    [Google Scholar]
  22. Chang L, Blain D, Bertuzzi S, Brooks BP. 2006. Uveal coloboma: clinical and basic science update. Curr. Opin. Ophthalmol. 17:447–70
    [Google Scholar]
  23. Chauhan BK, Disanza A, Choi SY, Faber SC, Lou M et al. 2009. Cdc42- and IRSp53-dependent contractile filopodia tether presumptive lens and retina to coordinate epithelial invagination. Development 136:3657–67
    [Google Scholar]
  24. Chen S, Lewis B, Moran A, Xie T. 2012. Cadherin-mediated cell adhesion is critical for the closing of the mouse optic fissure. PLOS ONE 7:e51705
    [Google Scholar]
  25. Chiang C, Litingtung Y, Lee E, Young KE, Corden JL et al. 1996. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383:407–13
    [Google Scholar]
  26. Chou CM, Nelson C, Tarle SA, Pribila JT, Bardakjian T et al. 2015. Biochemical basis for dominant inheritance, variable penetrance, and maternal effects in RBP4 congenital eye disease. Cell 161:634–46
    [Google Scholar]
  27. Coulombre AJ. 1965. The eye. Organogenesis RL DeHaan, H Ursprung 219–51. New York: Holt Reinehart Winston
    [Google Scholar]
  28. Cukras C, Gaasterland T, Lee P, Gudiseva HV, Chavali VR et al. 2012. Exome analysis identified a novel mutation in the RBP4 gene in a consanguineous pedigree with retinal dystrophy and developmental abnormalities. PLOS ONE 7:e50205
    [Google Scholar]
  29. Dong LJ, Chung AE. 1991. The expression of the genes for entactin, laminin A, laminin B1 and laminin B2 in murine lens morphogenesis and eye development. Differentiation 48:157–72
    [Google Scholar]
  30. Dong S, Landfair J, Balasubramani M, Bier ME, Cole G, Halfter W. 2002. Expression of basal lamina protein mRNAs in the early embryonic chick eye. J. Comp. Neurol. 447:261–73
    [Google Scholar]
  31. Dunn NR, Winnier GE, Hargett LK, Schrick JJ, Fogo AB, Hogan BL. 1997. Haploinsufficient phenotypes in Bmp4 heterozygous null mice and modification by mutations in Gli3 and Alx4. Dev. Biol. 188:235–47
    [Google Scholar]
  32. Eccles MR, Schimmenti LA. 1999. Renal-coloboma syndrome: a multi-system developmental disorder caused by PAX2 mutations. Clin. Genet. 56:1–9
    [Google Scholar]
  33. Eckert P, Knickmeyer MD, Schutz L, Wittbrodt J, Heermann S. 2019. Morphogenesis and axis specification occur in parallel during optic cup and optic fissure formation, differentially modulated by BMP and Wnt. Open Biol. 9:180179
    [Google Scholar]
  34. England SJ, Blanchard GB, Mahadevan L, Adams RJ. 2006. A dynamic fate map of the forebrain shows how vertebrate eyes form and explains two causes of cyclopia. Development 133:4613–17
    [Google Scholar]
  35. Evans AL, Gage PJ. 2005. Expression of the homeobox gene Pitx2 in neural crest is required for optic stalk and ocular anterior segment development. Hum. Mol. Genet. 14:3347–59
    [Google Scholar]
  36. Faber SC, Dimanlig P, Makarenkova HP, Shirke S, Ko K, Lang RA. 2001. Fgf receptor signaling plays a role in lens induction. Development 128:4425–38
    [Google Scholar]
  37. Feldman B, Gates MA, Egan ES, Dougan ST, Rennebeck G et al. 1998. Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395:181–85
    [Google Scholar]
  38. Ferda Percin E, Ploder LA, Yu JJ, Arici K, Horsford DJ et al. 2000. Human microphthalmia associated with mutations in the retinal homeobox gene CHX10. Nat. Genet. 25:397–401
    [Google Scholar]
  39. Fujiwara M, Uchida T, Osumi-Yamashita N, Eto K. 1994. Uchida rat (rSey): a new mutant rat with craniofacial abnormalities resembling those of the mouse Sey mutant. Differentiation 57:31–38
    [Google Scholar]
  40. Furuta Y, Hogan BL. 1998. BMP4 is essential for lens induction in the mouse embryo. Genes Dev. 12:3764–75
    [Google Scholar]
  41. Gage PJ, Rhoades W, Prucka SK, Hjalt T. 2005. Fate maps of neural crest and mesoderm in the mammalian eye. Investig. Ophthalmol. Vis. Sci. 46:4200–8
    [Google Scholar]
  42. Garcia CM, Huang J, Madakashira BP, Liu Y, Rajagopal R et al. 2011. The function of FGF signaling in the lens placode. Dev. Biol. 351:176–85
    [Google Scholar]
  43. Geeraets R. 1976. An electron microscopic study of the closure of the optic fissure in the golden hamster. Am. J. Anat. 145:411–31
    [Google Scholar]
  44. Gestri G, Bazin-Lopez N, Scholes C, Wilson SW. 2018. Cell behaviors during closure of the choroid fissure in the developing eye. Front. Cell. Neurosci. 12:42
    [Google Scholar]
  45. Gestri G, Osborne RJ, Wyatt AW, Gerrelli D, Gribble S et al. 2009. Reduced TFAP2A function causes variable optic fissure closure and retinal defects and sensitizes eye development to mutations in other morphogenetic regulators. Hum. Genet. 126:791–803
    [Google Scholar]
  46. Gordon HB, Lusk S, Carney KR, Wirick EO, Murray BF, Kwan KM. 2018. Hedgehog signaling regulates cell motility and optic fissure and stalk formation during vertebrate eye morphogenesis. Development 145:dev165068
    [Google Scholar]
  47. Gotoh N, Ito M, Yamamoto S, Yoshino I, Song N et al. 2004. Tyrosine phosphorylation sites on FRS2alpha responsible for Shp2 recruitment are critical for induction of lens and retina. PNAS 101:17144–49
    [Google Scholar]
  48. Gregory-Evans CY, Williams MJ, Halford S, Gregory-Evans K. 2004. Ocular coloboma: a reassessment in the age of molecular neuroscience. J. Med. Genet. 41:881–91
    [Google Scholar]
  49. Gritsman K, Zhang J, Cheng S, Heckscher E, Talbot WS, Schier AF. 1999. The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 97:121–32
    [Google Scholar]
  50. Hallonet M, Hollemann T, Wehr R, Jenkins NA, Copeland NG et al. 1998. Vax1 is a novel homeobox-containing gene expressed in the developing anterior ventral forebrain. Development 125:2599–610
    [Google Scholar]
  51. Hardy H, Prendergast JG, Patel A, Dutta S, Trejo-Reveles V et al. 2019. Detailed analysis of chick optic fissure closure reveals Netrin-1 as an essential mediator of epithelial fusion. eLife 8:e43877
    [Google Scholar]
  52. Hartsock A, Lee C, Arnold V, Gross JM. 2014. In vivo analysis of hyaloid vasculature morphogenesis in zebrafish: a role for the lens in maturation and maintenance of the hyaloid. Dev. Biol. 394:327–39
    [Google Scholar]
  53. Hasegawa Y, Takata N, Okuda S, Kawada M, Eiraku M, Sasai Y. 2016. Emergence of dorsal-ventral polarity in ESC-derived retinal tissue. Development 143:3895–906
    [Google Scholar]
  54. Hayes JM, Hartsock A, Clark BS, Napier HR, Link BA, Gross JM. 2012. Integrin alpha5/fibronectin1 and focal adhesion kinase are required for lens fiber morphogenesis in zebrafish. Mol. Biol. Cell 23:4725–38
    [Google Scholar]
  55. Heermann S, Schutz L, Lemke S, Krieglstein K, Wittbrodt J. 2015. Eye morphogenesis driven by epithelial flow into the optic cup facilitated by modulation of bone morphogenetic protein. eLife 4:e05216
    [Google Scholar]
  56. Hendrix RW, Zwaan J. 1974. Cell shape regulation and cell cycle in embryonic lens cells. Nature 247:145–47
    [Google Scholar]
  57. Hendrix RW, Zwaan J. 1975. The matrix of the optic vesicle-presumptive lens interface during induction of the lens in the chicken embryo. J. Embryol. Exp. Morphol. 33:1023–49
    [Google Scholar]
  58. Hero I. 1989. The optic fissure in the normal and microphthalmic mouse. Exp. Eye. Res. 49:229–39
    [Google Scholar]
  59. Hilfer SR, Brady RC, Yang J-JW 1981. Intracellular and extracellular changes during early ocular development in the chick embryo. Ocular Size and Shape: Regulation During Development SR Hilfer, JB Sheffield 47–78. Berlin: Springer
    [Google Scholar]
  60. Hilfer SR, Randolph GJ. 1993. Immunolocalization of basal lamina components during development of chick otic and optic primordia. Anat. Rec. 235:443–52
    [Google Scholar]
  61. Hogan BL, Horsburgh G, Cohen J, Hetherington CM, Fisher G, Lyon MF. 1986. Small eyes (Sey): a homozygous lethal mutation on chromosome 2 which affects the differentiation of both lens and nasal placodes in the mouse. J. Embryol. Exp. Morphol. 97:95–110
    [Google Scholar]
  62. Houssin NS, Martin JB, Coppola V, Yoon SO, Plageman TF Jr. 2020. Formation and contraction of multicellular actomyosin cables facilitate lens placode invagination. Dev. Biol. 462:36–49
    [Google Scholar]
  63. Huang J, Liu Y, Filas B, Gunhaga L, Beebe DC. 2015a. Negative and positive auto-regulation of BMP expression in early eye development. Dev. Biol. 407:256–64
    [Google Scholar]
  64. Huang J, Liu Y, Oltean A, Beebe DC. 2015b. Bmp4 from the optic vesicle specifies murine retina formation. Dev. Biol. 402:119–26
    [Google Scholar]
  65. Huang J, Rajagopal R, Liu Y, Dattilo LK, Shaham O et al. 2011. The mechanism of lens placode formation: a case of matrix-mediated morphogenesis. Dev. Biol. 355:32–42
    [Google Scholar]
  66. Hunt HH. 1961. A study of the fine structure of the optic vesicle and lens placode of the chick embryo during induction. Dev. Biol. 3:175–209
    [Google Scholar]
  67. Hyer J, Mima T, Mikawa T. 1998. FGF1 patterns the optic vesicle by directing the placement of the neural retina domain. Development 125:869–77
    [Google Scholar]
  68. Ivanovitch K, Cavodeassi F, Wilson SW. 2013. Precocious acquisition of neuroepithelial character in the eye field underlies the onset of eye morphogenesis. Dev. Cell 27:293–305
    [Google Scholar]
  69. Iwata J, Parada C, Chai Y. 2011. The mechanism of TGF-beta signaling during palate development. Oral Dis. 17:733–44
    [Google Scholar]
  70. James A, Lee C, Williams AM, Angileri K, Lathrop KL, Gross JM. 2016. The hyaloid vasculature facilitates basement membrane breakdown during choroid fissure closure in the zebrafish eye. Dev. Biol. 419:262–72
    [Google Scholar]
  71. Jena N, Martin-Seisdedos C, McCue P, Croce CM. 1997. BMP7 null mutation in mice: developmental defects in skeleton, kidney, and eye. Exp. Cell Res. 230:28–37
    [Google Scholar]
  72. Kim JY, Park R, Lee JH, Shin J, Nickas J et al. 2016. Yap is essential for retinal progenitor cell cycle progression and RPE cell fate acquisition in the developing mouse eye. Dev. Biol. 419:336–47
    [Google Scholar]
  73. Klingensmith J, Matsui M, Yang YP, Anderson RM. 2010. Roles of bone morphogenetic protein signaling and its antagonism in holoprosencephaly. Am. J. Med. Genet. C 154C:43–51
    [Google Scholar]
  74. Knickmeyer MD, Mateo JL, Eckert P, Roussa E, Rahhal B et al. 2018. TGFβ-facilitated optic fissure fusion and the role of bone morphogenetic protein antagonism. Open Biol. 8:170134
    [Google Scholar]
  75. Kreslova J, Machon O, Ruzickova J, Lachova J, Wawrousek EF et al. 2007. Abnormal lens morphogenesis and ectopic lens formation in the absence of beta-catenin function. Genesis 45:157–68
    [Google Scholar]
  76. Kwan KM, Otsuna H, Kidokoro H, Carney KR, Saijoh Y, Chien CB. 2012. A complex choreography of cell movements shapes the vertebrate eye. Development 139:359–72
    [Google Scholar]
  77. Lang RA, Herman K, Reynolds AB, Hildebrand JD, Plageman TF Jr. 2014. p120-Catenin-dependent junctional recruitment of Shroom3 is required for apical constriction during lens pit morphogenesis. Development 141:3177–87
    [Google Scholar]
  78. Li H, Tierney C, Wen L, Wu JY, Rao Y. 1997. A single morphogenetic field gives rise to two retina primordia under the influence of the prechordal plate. Development 124:603–15
    [Google Scholar]
  79. Li Z, Joseph NM, Easter SS Jr. 2000. The morphogenesis of the zebrafish eye, including a fate map of the optic vesicle. Dev. Dyn. 218:175–88
    [Google Scholar]
  80. Lingam G, Sen AC, Lingam V, Bhende M, Padhi TR, Xinyi S. 2021. Ocular coloboma—a comprehensive review for the clinician. Eye 35:2086–109
    [Google Scholar]
  81. Lupo G, Gestri G, O'Brien M, Denton RM, Chandraratna RA et al. 2011. Retinoic acid receptor signaling regulates choroid fissure closure through independent mechanisms in the ventral optic cup and periocular mesenchyme. PNAS 108:8698–703
    [Google Scholar]
  82. Lusk S, Kwan KM. 2022. Pax2a, but not pax2b, influences cell survival and periocular mesenchyme localization to facilitate zebrafish optic fissure closure. Dev. Dyn. 251:625–44
    [Google Scholar]
  83. Macdonald R, Barth KA, Xu Q, Holder N, Mikkola I, Wilson SW. 1995. Midline signalling is required for Pax gene regulation and patterning of the eyes. Development 121:3267–78
    [Google Scholar]
  84. Macdonald R, Scholes J, Strahle U, Brennan C, Holder N et al. 1997. The Pax protein Noi is required for commissural axon pathway formation in the rostral forebrain. Development 124:2397–408
    [Google Scholar]
  85. Maloney C, Wakely J. 1982. Analysis of tissue interactions in chick eye morphogenesis using cytochalasin B. Exp. Eye Res. 35:77–87
    [Google Scholar]
  86. Mann I. 1950. The Development of the Human Eye New York: Grune & Stratton
  87. Martinez-Morales JR, Rembold M, Greger K, Simpson JC, Brown KE et al. 2009. Ojoplano-mediated basal constriction is essential for optic cup morphogenesis. Development 136:2165–75
    [Google Scholar]
  88. Masai I, Lele Z, Yamaguchi M, Komori A, Nakata A et al. 2003. N-cadherin mediates retinal lamination, maintenance of forebrain compartments and patterning of retinal neurites. Development 130:2479–94
    [Google Scholar]
  89. McAvoy JW. 1980. Cytoplasmic processes interconnect lens placode and optic vesicle during eye morphogenesis. Exp. Eye Res. 31:527–34
    [Google Scholar]
  90. McAvoy JW. 1981. The spatial relationship between presumptive lens and optic vesicle/cup during early eye morphogenesis in the rat. Exp. Eye Res. 33:447–58
    [Google Scholar]
  91. McKeehan MS. 1951. Cytological aspects of embryonic lens induction in the chick. J. Exp. Zool. 117:31–64
    [Google Scholar]
  92. McMahon C, Gestri G, Wilson SW, Link BA. 2009. Lmx1b is essential for survival of periocular mesenchymal cells and influences Fgf-mediated retinal patterning in zebrafish. Dev. Biol. 332:287–98
    [Google Scholar]
  93. Miesfeld JB, Gestri G, Clark BS, Flinn MA, Poole RJ et al. 2015. Yap and Taz regulate retinal pigment epithelial cell fate. Development 142:3021–32
    [Google Scholar]
  94. Morcillo J, Martinez-Morales JR, Trousse F, Fermin Y, Sowden JC, Bovolenta P. 2006. Proper patterning of the optic fissure requires the sequential activity of BMP7 and SHH. Development 133:3179–90
    [Google Scholar]
  95. Moreno-Marmol T, Ledesma-Terron M, Tabanera N, Martin-Bermejo MJ, Cardozo MJ et al. 2021. Stretching of the retinal pigment epithelium contributes to zebrafish optic cup morphogenesis. eLife 10:e63396
    [Google Scholar]
  96. Muccioli M, Qaisi D, Herman K, Plageman TF Jr. 2016. Lens placode planar cell polarity is dependent on Cdc42-mediated junctional contraction inhibition. Dev. Biol. 412:32–43
    [Google Scholar]
  97. Mui SH, Kim JW, Lemke G, Bertuzzi S. 2005. Vax genes ventralize the embryonic eye. Genes Dev. 19:1249–59
    [Google Scholar]
  98. Muller F, Albert S, Blader P, Fischer N, Hallonet M, Strahle U. 2000. Direct action of the nodal-related signal cyclops in induction of sonic hedgehog in the ventral midline of the CNS. Development 127:3889–97
    [Google Scholar]
  99. Muller F, Rohrer H, Vogel-Hopker A. 2007. Bone morphogenetic proteins specify the retinal pigment epithelium in the chick embryo. Development 134:3483–93
    [Google Scholar]
  100. Nicolas-Perez M, Kuchling F, Letelier J, Polvillo R, Wittbrodt J, Martinez-Morales JR. 2016. Analysis of cellular behavior and cytoskeletal dynamics reveal a constriction mechanism driving optic cup morphogenesis. eLife 5:e15797
    [Google Scholar]
  101. Onwochei BC, Simon JW, Bateman JB, Couture KC, Mir E. 2000. Ocular colobomata. Surv. Ophthalmol. 45:175–94
    [Google Scholar]
  102. Pan Y, Woodbury A, Esko JD, Grobe K, Zhang X. 2006. Heparan sulfate biosynthetic gene Ndst1 is required for FGF signaling in early lens development. Development 133:4933–44
    [Google Scholar]
  103. Parmigiani C, McAvoy J. 1984. Localisation of laminin and fibronectin during rat lens morphogenesis. Differentiation 28:53–61
    [Google Scholar]
  104. Pathania M, Semina EV, Duncan MK. 2014. Lens extrusion from Laminin alpha 1 mutant zebrafish. ScientificWorldJournal 2014:524929
    [Google Scholar]
  105. Pathania M, Wang Y, Simirskii VN, Duncan MK. 2016. β1-Integrin controls cell fate specification in early lens development. Differentiation 92:133–47
    [Google Scholar]
  106. Picker A, Brand M. 2005. Fgf signals from a novel signaling center determine axial patterning of the prospective neural retina. Development 132:4951–62
    [Google Scholar]
  107. Picker A, Cavodeassi F, Machate A, Bernauer S, Hans S et al. 2009. Dynamic coupling of pattern formation and morphogenesis in the developing vertebrate retina. PLOS Biol. 7:e1000214
    [Google Scholar]
  108. Plageman TF Jr., Chauhan BK, Yang C, Jaudon F, Shang X et al. 2011. A Trio-RhoA-Shroom3 pathway is required for apical constriction and epithelial invagination. Development 138:5177–88
    [Google Scholar]
  109. Plageman TF Jr., Chung MI, Lou M, Smith AN, Hildebrand JD et al. 2010. Pax6-dependent Shroom3 expression regulates apical constriction during lens placode invagination. Development 137:405–15
    [Google Scholar]
  110. Ragge NK, Salt A, Collin JR, Michalski A, Farndon PA. 2005. Gorlin syndrome: the PTCH gene links ocular developmental defects and tumour formation. Br. J. Ophthalmol. 89:988–91
    [Google Scholar]
  111. Rajagopal R, Huang J, Dattilo LK, Kaartinen V, Mishina Y et al. 2009. The type I BMP receptors, Bmpr1a and Acvr1, activate multiple signaling pathways to regulate lens formation. Dev. Biol. 335:305–16
    [Google Scholar]
  112. Rembold M, Loosli F, Adams RJ, Wittbrodt J. 2006. Individual cell migration serves as the driving force for optic vesicle evagination. Science 313:1130–34
    [Google Scholar]
  113. Richardson R, Owen N, Toms M, Young RM, Tracey-White D, Moosajee M. 2019. Transcriptome profiling of zebrafish optic fissure fusion. Sci. Rep. 9:1541
    [Google Scholar]
  114. Roberts RC. 1967. Small eyes—a new dominant eye mutant in the mouse. Genet. Res. 9:121–22
    [Google Scholar]
  115. Roessler E, Muenke M. 2010. The molecular genetics of holoprosencephaly. Am. J. Med. Genet C 154C:52–61
    [Google Scholar]
  116. Sasagawa S, Takabatake T, Takabatake Y, Muramatsu T, Takeshima K 2002. Axes establishment during eye morphogenesis in Xenopus by coordinate and antagonistic actions of BMP4, Shh, and RA. Genesis 33:86–96
    [Google Scholar]
  117. Schimmenti LA, de la Cruz J, Lewis RA, Karkera JD, Manligas GS et al. 2003. Novel mutation in sonic hedgehog in non-syndromic colobomatous microphthalmia. Am. J. Med. Genet. A 116A:215–21
    [Google Scholar]
  118. Schook P. 1980a. Morphogenetic movements during the early development of the chick eye. A light microscopic and spatial reconstructive study. Acta Morphol. Neerl. Scand. 18:133–57
    [Google Scholar]
  119. Schook P. 1980b. A spatial analysis of the localization of cell division and cell death in relationship with the morphogenesis of the chick optic cup. Acta Morphol. Neerl. Scand. 18:213–29
    [Google Scholar]
  120. See AW, Clagett-Dame M. 2009. The temporal requirement for vitamin A in the developing eye: mechanism of action in optic fissure closure and new roles for the vitamin in regulating cell proliferation and adhesion in the embryonic retina. Dev. Biol. 325:94–105
    [Google Scholar]
  121. Semina EV, Bosenko DV, Zinkevich NC, Soules KA, Hyde DR et al. 2006. Mutations in laminin alpha 1 result in complex, lens-independent ocular phenotypes in zebrafish. Dev. Biol. 299:63–77
    [Google Scholar]
  122. Sidhaye J, Norden C. 2017. Concerted action of neuroepithelial basal shrinkage and active epithelial migration ensures efficient optic cup morphogenesis. eLife 6:e22689
    [Google Scholar]
  123. Silver J 1981. The role of cell death and related phenomena during formation of the optic pathway. Ocular Size and Shape: Regulation During Development SR Hilfer, JB Sheffield 1–24. Berlin: Springer
    [Google Scholar]
  124. Silver PH, Wakely J. 1974. Fine structure, origin and fate of extracellular materials in the interspace between the presumptive lens and presumptive retina of the chick embryo. J. Anat. 118:19–31
    [Google Scholar]
  125. Soans KG, Ramos AP, Sidhaye J, Krishna A, Solomatina A et al. 2022. Collective cell migration during optic cup formation features changing cell-matrix interactions linked to matrix topology. Curr. Biol. 32:4817–31.e9
    [Google Scholar]
  126. Spemann H. 1901. Ueber Korrelationen in der Entwicklung des Auges. Ver. Anat. Gesellsch. 15:61–79
    [Google Scholar]
  127. Stainier DY, Weinstein BM, Detrich HW, Zon LI, Fishman MC 1995. Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 121:3141–50
    [Google Scholar]
  128. Steinfeld J, Steinfeld I, Coronato N, Hampel ML, Layer PG et al. 2013. RPE specification in the chick is mediated by surface ectoderm-derived BMP and Wnt signalling. Development 140:4959–69
    [Google Scholar]
  129. Svoboda KK, O'Shea KS 1987. An analysis of cell shape and the neuroepithelial basal lamina during optic vesicle formation in the mouse embryo. Development 100:185–200
    [Google Scholar]
  130. Take-uchi M, Clarke JD, Wilson SW. 2003. Hedgehog signalling maintains the optic stalk-retinal interface through the regulation of Vax gene activity. Development 130:955–68
    [Google Scholar]
  131. Torres M, Gomez-Pardo E, Gruss P. 1996. Pax2 contributes to inner ear patterning and optic nerve trajectory. Development 122:3381–91
    [Google Scholar]
  132. Tsuji N, Matsuura T, Narama I, Yoshiki A, Ozaki K. 2018. Macrophage-associated gelatinase degrades basement membrane at the optic fissure margins during normal ocular development in mice. Investig. Ophthalmol. Vis. Sci. 59:1368–73
    [Google Scholar]
  133. Tuckett F, Morriss-Kay GM. 1986. The distribution of fibronectin, laminin and entactin in the neurulating rat embryo studied by indirect immunofluorescence. J. Embryol. Exp. Morphol. 94:95–112
    [Google Scholar]
  134. Wakely J. 1977. Scanning electron microscope study of the extracellular matrix between presumptive lens and presumptive retina of the chick embryo. Anat. Embryol. 150:163–70
    [Google Scholar]
  135. Walls GL. 1942. The Vertebrate Eye and Its Adaptive Radiation New York: Hafner Publ. Co.
  136. Wawersik S, Purcell P, Rauchman M, Dudley AT, Robertson EJ, Maas R. 1999. BMP7 acts in murine lens placode development. Dev. Biol. 207:176–88
    [Google Scholar]
  137. Weaver ML, Piedade WP, Meshram NN, Famulski JK. 2020. Hyaloid vasculature and mmp2 activity play a role during optic fissure fusion in zebrafish. Sci. Rep. 10:10136
    [Google Scholar]
  138. Webster EH Jr., Silver AF, Gonsalves NI. 1983. Histochemical analysis of extracellular matrix material in embryonic mouse lens morphogenesis. Dev. Biol. 100:147–57
    [Google Scholar]
  139. Westenskow P, Piccolo S, Fuhrmann S. 2009. Beta-catenin controls differentiation of the retinal pigment epithelium in the mouse optic cup by regulating Mitf and Otx2 expression. Development 136:2505–10
    [Google Scholar]
  140. Wyatt AW, Osborne RJ, Stewart H, Ragge NK. 2010. Bone morphogenetic protein 7 (BMP7) mutations are associated with variable ocular, brain, ear, palate, and skeletal anomalies. Hum. Mutat. 31:781–87
    [Google Scholar]
  141. Yahyavi M, Abouzeid H, Gawdat G, de Preux AS, Xiao T et al. 2013. ALDH1A3 loss of function causes bilateral anophthalmia/microphthalmia and hypoplasia of the optic nerve and optic chiasm. Hum. Mol. Genet. 22:3250–58
    [Google Scholar]
  142. Zhao S, Hung FC, Colvin JS, White A, Dai W et al. 2001. Patterning the optic neuroepithelium by FGF signaling and Ras activation. Development 128:5051–60
    [Google Scholar]
  143. Zou C, Levine EM. 2012. Vsx2 controls eye organogenesis and retinal progenitor identity via homeodomain and non-homeodomain residues required for high affinity DNA binding. PLOS Genet. 8:e1002924
    [Google Scholar]
/content/journals/10.1146/annurev-vision-100720-111125
Loading
/content/journals/10.1146/annurev-vision-100720-111125
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error