Skip to main content

Advertisement

Log in

The Unique Importance of Differentiation and Function in Endocrine Neoplasia

  • Review
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

The assessment of cell differentiation in endocrine neoplasms involves not only the identification of a cell’s structure and expression of specific transcription factors which regulate that cell, but also the identification of hormones and/or enzymes involved in hormone synthesis. The importance of this functional characterization is emphasized by the fact that the hormones serve as biomarkers for clinical surveillance to identify persistence, recurrence, or progression of disease. Sometimes, unusual patterns of hormone expression lead to unexpected clinical signs and symptoms. Loss of differentiated hormone production can be a sign of dedifferentiation as a tumor becomes more aggressive. In addition to prognostic information, cell differentiation can be predictive, since differentiated endocrine cells express targets for therapy, such as the sodium iodide symporter in thyroid cancers and somatostatin receptors in neuroendocrine tumors. The salient features of differentiation in the three main types of endocrine cells can be used to determine prognosis and to tailor management of patients with endocrine neoplasms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. Fabbro D, Di Loreto C, Beltrami CA, Belfiore A, Di Lauro R, Damante G (1994) Expression of thyroid-specific transcription factors TTF-1 and PAX-8 in human thyroid neoplasms. Cancer Res 54: 4744-4749.

    CAS  PubMed  Google Scholar 

  2. Trueba SS, Auge J, Mattei G, Etchevers H, Martinovic J, Czernichow P, Vekemans M, Polak M, Attie-Bitach T (2005) PAX8, TITF1, and FOXE1 gene expression patterns during human development: new insights into human thyroid development and thyroid dysgenesis-associated malformations. J Clin Endocrinol Metab 90: 455–462. jc.2004–1358. https://doi.org/10.1210/jc.2004-1358.

  3. Tanda ML, Ippolito S (2022) Thyroid Hormones. In: La Rosa S., Uccella S, editors. Endocrine Pathology. Springer. pp. https://doi.org/10.1007/978-3-030-62345-6_5292.

  4. Asa SL, Mete O (2021) Oncocytic change in thyroid pathology. Front Endocrinol (Lausanne) 12: 678119. https://doi.org/10.3389/fendo.2021.678119.

  5. Baloch Z, Mete O, Asa SL (2018) Immunohistochemical biomarkers in thyroid pathology. Endocr Pathol 29: 91-112. https://doi.org/10.1007/s12022-018-9532-9.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang X, Howell JM, Huang Y (2018) Cervical lymph node fine-needle aspiration and needle-wash thyroglobulin reflex test for papillary thyroid carcinoma. Endocr Pathol 29: 346-350. https://doi.org/10.1007/s12022-018-9547-2.

    Article  CAS  PubMed  Google Scholar 

  7. Kim H, Kim YN, Kim HI, Park SY, Choe JH, Kim JH, Kim JS, Chung JH, Kim TH, Kim SW (2017) Preoperative serum thyroglobulin predicts initial distant metastasis in patients with differentiated thyroid cancer. Sci Rep 7: 16955. https://doi.org/10.1038/s41598-017-17176-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pacini F, Fuhrer D, Elisei R, Handkiewicz-Junak D, Leboulleux S, Luster M, Schlumberger M, Smit JW (2022) 2022 ETA Consensus Statement: what are the indications for post-surgical radioiodine therapy in differentiated thyroid cancer? Eur Thyroid J 11. e210046. https://doi.org/10.1530/ETJ-21-0046.

  9. Baloch ZW, Asa SL, Barletta JA, Ghossein RA, Juhlin CC, Jung CK, LiVolsi VA, Papotti MG, Sobrinho-Simoes M, Tallini G, Mete O (2022) Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr Pathol 33: 27-63. https://doi.org/10.1007/s12022-022-09707-3.

    Article  PubMed  Google Scholar 

  10. Xu B, Fuchs T, Dogan S, Landa I, Katabi N, Fagin JA, Tuttle RM, Sherman E, Gill AJ, Ghossein R (2020) Dissecting Anaplastic thyroid carcinoma: a comprehensive clinical, histologic, immunophenotypic, and molecular study of 360 cases. Thyroid 30: 1505-1517. https://doi.org/10.1089/thy.2020.0086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kondo T, Ezzat S, Asa SL (2006) Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 6: 292-306.

    Article  CAS  PubMed  Google Scholar 

  12. DeLellis, R. A., Lloyd, R. V., Heitz, P. U, and Eng, C. (2004) Pathology and genetics of tumours of endocrine organs. Lyons, France: IARC Press.

    Google Scholar 

  13. Lloyd, R. V., Osamura, R. Y., Kloppel, G., and Rosai, J. (2017) WHO Classification of Tumours of Endocrine Organs (4th edition), IARC: Lyon, 2017. Lyon: IARC.

  14. Volante M, Collini P, Nikiforov YE, Sakamoto A, Kakudo K, Katoh R, Lloyd RV, LiVolsi VA, Papotti M, Sobrinho-Simoes M, Bussolati G, Rosai J (2007) Poorly differentiated thyroid carcinoma: the Turin proposal for the use of uniform diagnostic criteria and an algorithmic diagnostic approach. Am J Surg Pathol 31: 1256-1264.

    Article  PubMed  Google Scholar 

  15. Rindi G, Mete O, Uccella S, Basturk O, La RS, Brosens LAA, Ezzat S, de Herder WW, Klimstra DS, Papotti M, Asa SL (2022) Overview of the 2022 WHO Classification of Neuroendocrine Neoplasms. Endocr Pathol 33: 115-154. https://doi.org/10.1007/s12022-022-09708-2.

    Article  CAS  PubMed  Google Scholar 

  16. Rindi G, Klimstra DS, Abedi-Ardekani B, Asa SL, Bosman FT, Brambilla E, Busam KJ, de Krijger RR, Dietel M, El-Naggar AK, Fernandez-Cuesta L, Kloppel G, McCluggage WG, Moch H, Ohgaki H, Rakha EA, Reed NS, Rous BA, Sasano H, Scarpa A, Scoazec JY, Travis WD, Tallini G, Trouillas J, van Krieken JH, Cree IA (2018) A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod Pathol 31: 1770-1786. https://doi.org/10.1038/s41379-018-0110-y.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hiltzik D, Carlson DL, Tuttle RM, Chuai S, Ishill N, Shaha A, Shah JP, Singh B, Ghossein RA (2006) Poorly differentiated thyroid carcinomas defined on the basis of mitosis and necrosis: a clinicopathologic study of 58 patients. Cancer 106: 1286-1295.

    Article  PubMed  Google Scholar 

  18. Xu B, David J, Dogan S, Landa I, Katabi N, Saliba M, Khimraj A, Sherman EJ, Tuttle RM, Tallini G, Ganly I, Fagin JA, Ghossein RA (2022) Primary high-grade non-anaplastic thyroid carcinoma: a retrospective study of 364 cases. Histopathology 80: 322-337. https://doi.org/10.1111/his.14550.

    Article  PubMed  Google Scholar 

  19. Asa SL, Mete O (2018) Endocrine pathology: past, present and future. Pathol 50: 111–118. S0031–3025(17)30442–7. https://doi.org/10.1016/j.pathol.2017.09.003.

  20. Uccella S, La Rosa S, Volante M, Papotti M (2018) Immunohistochemical biomarkers of gastrointestinal, pancreatic, pulmonary, and thymic neuroendocrine neoplasms. Endocr Pathol 29: 150-168. https://doi.org/10.1007/s12022-018-9522-y.

    Article  PubMed  Google Scholar 

  21. Theodoropoulou M, Stalla GK (2013) Somatostatin receptors: from signaling to clinical practice. Front Neuroendocrinol 34: 228–252. S0091–3022(13)00039–3. https://doi.org/10.1016/j.yfrne.2013.07.005.

  22. Komarnicki P, Musialkiewicz J, Stanska A, Maciejewski A, Gut P, Mastorakos G, Ruchala M (2022) Circulating neuroendocrine tumor biomarkers: past, present and future. J Clin Med 11. jcm11195542. jcm-11–05542. https://doi.org/10.3390/jcm11195542.

  23. Willams JA (2023) Vasoctive Intestinal polypeptide or VIP. Pancreapedia. Exocrine Pancreas Knowledge Base. American Pancreatic Association. pancreapedia.org/molecules/vasoacative-intestinal-polypeptide-or-VIPhttps://doi.org/10.3998/panc.2020.03

  24. Asa SL, Mete O, Perry A, Osamura RY (2022) Overview of the 2022 WHO Classification of Pituitary Tumors. Endocr Pathol 33: 6-26. https://doi.org/10.1007/s12022-022-09703-7.

    Article  CAS  PubMed  Google Scholar 

  25. Asa SL, Mete O, Cusimano MD, McCutcheon IE, Perry A, Yamada S, Nishioka H, Casar-Borota O, Uccella S, La Rosa S, Grossman AB, Ezzat S (2021) Pituitary neuroendocrine tumors: a model for neuroendocrine tumor classification. Mod Pathol 34: 1634-1650. https://doi.org/10.1038/s41379-021-00820-y.

    Article  PubMed  Google Scholar 

  26. Asa, S. L. and Perry, A. (2020) Tumors of the pituitary gland. Arlington VA: ARP Press.

    Book  Google Scholar 

  27. Asa SL, Ezzat S (2021) An update on pituitary neuroendocrine tumors leading to acromegaly and gigantism. J Clin Med. https://doi.org/10.3390/jcm10112254.

  28. Wilhelm SM, Wang TS, Ruan DT, Lee JA, Asa SL, Duh QY, Doherty GM, Herrera MF, Pasieka JL, Perrier ND, Silverberg SJ, Solorzano CC, Sturgeon C, Tublin ME, Udelsman R, Carty SE (2016) The American Association of Endocrine Surgeons Guidelines for definitive management of primary hyperparathyroidism. JAMA Surg 151: 959–968. 2542667. https://doi.org/10.1001/jamasurg.2016.2310.

  29. Akirov A, Asa SL, Larouche V, Mete O, Sawka AM, Jang R, Ezzat S (2019) The clinicopathological spectrum of parathyroid carcinoma. Front Endocrinol (Lausanne) 10: 731. https://doi.org/10.3389/fendo.2019.00731.

    Article  PubMed  Google Scholar 

  30. Thomas CM, Asa SL, Ezzat S, Sawka AM, Goldstein D (2019) Diagnosis and pathologic characteristics of medullary thyroid carcinoma-review of current guidelines. Curr Oncol 26: 338-344. https://doi.org/10.3747/co.26.5539 conc-26-338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhuge X, Wang Y, Chen X, Guo C (2020) Diabetes in patients with pancreatic neuroendocrine neoplasms. Front Endocrinol (Lausanne) 11: 615082. https://doi.org/10.3389/fendo.2020.615082.

  32. Vinik A, Feliberti E, Perry RR (2000) Pancreatic Polypeptide (PPoma). In.

  33. Maxwell JE, O'Dorisio TM, Bellizzi AM, Howe JR (2014) Elevated pancreatic polypeptide levels in pancreatic neuroendocrine tumors and diabetes mellitus: causation or association? Pancreas 43: 651–656. 00006676–201405000–00025. https://doi.org/10.1097/MPA.0000000000000082.

  34. Young J, Haissaguerre M, Viera-Pinto O, Chabre O, Baudin E, Tabarin A (2020) Management of endocrine disease: Cushing's syndrome due to ectopic ACTH secretion: an expert operational opinion. Eur J Endocrinol 182: R29-R58. EJE-19–0877. https://doi.org/10.1530/EJE-19-0877.

  35. Uccella S, Blank A, Maragliano R, Sessa F, Perren A, La Rosa S (2017) Calcitonin-producing neuroendocrine neoplasms of the pancreas: clinicopathological study of 25 cases and review of the literature. Endocr Pathol 28: 351-361. https://doi.org/10.1007/s12022-017-9505-4.

    Article  CAS  PubMed  Google Scholar 

  36. Alshaikh OM, Yoon JY, Chan BA, Krzyzanowska MK, Butany J, Asa SL, Ezzat S (2018) Pancreatic neuroendocrine tumor producing insulin and vasopressin. Endocr Pathol 29: 15-20. https://doi.org/10.1007/s12022-017-9492-5.

    Article  CAS  PubMed  Google Scholar 

  37. Mete O, Asa SL, Gill AJ, Kimura N, de Krijger RR, Tischler A (2022) Overview of the 2022 WHO Classification of Paragangliomas and Pheochromocytomas. Endocr Pathol 33: 90-114. https://doi.org/10.1007/s12022-022-09704-6.

    Article  CAS  PubMed  Google Scholar 

  38. Dreijerink KMA, Rijken JA, Compaijen CJ, Timmers HJLM, van der Horst-Schrivers ANA, van Leeuwaarde RS, van Dam PS, Leemans CR, van Dam EWCM, Dickhoff C, Dommering CJ, de GP, Zwezerijnen GJC, van d, V, Menke-Van der Houven van Oordt CW, Hensen EF, Corssmit EPM, Eekhoff EMW (2019) Biochemically silent sympathetic paraganglioma, pheochromocytoma, or metastatic disease in SDHD mutation carriers. J Clin Endocrinol Metab 104: 5421–5426. 5514330. https://doi.org/10.1210/jc.2019-00202.

  39. Osinga TE, Korpershoek E, de Krijger RR, Kerstens MN, Dullaart RP, Kema IP, van der Laan BF, van der Horst-Schrivers AN, Links TP (2015) Catecholamine-synthesizing enzymes are expressed in parasympathetic head and neck paraganglioma tissue. Neuroendocrinology 101: 289–295. 000377703. https://doi.org/10.1159/000377703.

  40. Inzani F, Rindi G, Serra S (2016) The endocrine pancreas. In: Mete O, Asa SL, editors. Endocrine Pathology. Cambridge: Cambridge University Press. pp. 718-742.

    Google Scholar 

  41. Asa SL, La Rosa S, Basturk O, Adsay V, Minnetti M, Grossman AB (2021) Molecular pathology of well-differentiated gastro-entero-pancreatic neuroendocrine tumors. Endocr Pathol 32: 169-191. https://doi.org/10.1007/s12022-021-09662-5.

    Article  PubMed  Google Scholar 

  42. Uccella S, La Rosa S, Metovic J, Marchiori D, Scoazec JY, Volante M, Mete O, Papotti M (2021) Genomics of high-grade neuroendocrine neoplasms: well-differentiated neuroendocrine tumor with high-grade features (G3 NET) and neuroendocrine carcinomas (NEC) of various anatomic sites. Endocr Pathol 32: 192-210. https://doi.org/10.1007/s12022-020-09660-z.

    Article  PubMed  Google Scholar 

  43. Ikeda Y, Shen W-H, Ingraham HA, Parker KL (1994) Developmental expression of mouse steroidogenic factor-1, an essential regulator of the steroid hydroxylases. Mol Endocrinol 8: 654-662.

    CAS  PubMed  Google Scholar 

  44. Lala DS, Rice DA, Parker KL (1992) Steroidogenic factor I, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I. Mol Endocrinol 6: 1249-1258.

    CAS  PubMed  Google Scholar 

  45. Morohashi K-I, Honda S-I, Inomata Y, Handa H, Omura T (1992) A common trans-acting factor, Ad4-binding protein, to the promoters of steroidogenic P-450s. J Biol Chem 267: 17913-17919.

    Article  CAS  PubMed  Google Scholar 

  46. Mete O, Asa SL (2012) Morphological distinction of cortisol-producing and aldosterone-producing adrenal cortical adenomas: not only possible but a critical clinical responsibility. Histopathology.

  47. Mete O, Asa SL, Giordano TJ, Papotti M, Sasano H, Volante M (2018) Immunohistochemical biomarkers of adrenal cortical neoplasms. Endocr Pathol 29: 137-149. https://doi.org/10.1007/s12022-018-9525-8.

    Article  CAS  PubMed  Google Scholar 

  48. Sun L, Jiang Y, Xie J, Zhu H, Wu L, Zhong X, Zhou W, Su T, Wang W (2021) Immunohistochemical analysis of CYP11B2, CYP11B1 and beta-catenin helps subtyping and relates with clinical characteristics of unilateral primary aldosteronism. Front Mol Biosci 8: 751770. 751770. https://doi.org/10.3389/fmolb.2021.751770.

  49. Williams TA, Gomez-Sanchez CE, Rainey WE, Giordano TJ, Lam AK, Marker A, Mete O, Yamazaki Y, Zerbini MCN, Beuschlein F, Satoh F, Burrello J, Schneider H, Lenders JWM, Mulatero P, Castellano I, Knosel T, Papotti M, Saeger W, Sasano H, Reincke M (2021) International histopathology consensus for unilateral primary aldosteronism. J Clin Endocrinol Metab 106: 42–54. 5876946. dgaa484. https://doi.org/10.1210/clinem/dgaa484.

  50. Murakami M, Rhayem Y, Kunzke T, Sun N, Feuchtinger A, Ludwig P, Strom TM, Gomez-Sanchez C, Knosel T, Kirchner T, Williams TA, Reincke M, Walch AK, Beuschlein F (2019) In situ metabolomics of aldosterone-producing adenomas. JCI Insight 4. 130356. https://doi.org/10.1172/jci.insight.130356.

  51. De SK, Boulkroun S, Baron S, Nanba K, Wack M, Rainey WE, Rocha A, Giscos-Douriez I, Meatchi T, Amar L, Travers S, Fernandes-Rosa FL, Zennaro MC (2020) Genetic, cellular, and molecular heterogeneity in adrenals with aldosterone-producing adenoma. Hypertension 75: 1034-1044. https://doi.org/10.1161/HYPERTENSIONAHA.119.14177.

    Article  CAS  Google Scholar 

  52. Suzuki S, Minamidate T, Shiga A, Ruike Y, Ishiwata K, Naito K, Ishida A, Deguchi H, Fujimoto M, Koide H, Tatsuno I, Ikeda JI, Yamazaki Y, Sasano H, Yokote K (2020) Steroid metabolites for diagnosing and predicting clinicopathological features in cortisol-producing adrenocortical carcinoma. BMC Endocr Disord 20: 173. https://doi.org/10.1186/s12902-020-00652-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Puglisi S, Calabrese A, Basile V, Pia A, Reimondo G, Perotti P, Terzolo M (2020) New perspectives for mitotane treatment of adrenocortical carcinoma. Best Pract Res Clin Endocrinol Metab 34: 101415. S1521–690X(20)30042–7. https://doi.org/10.1016/j.beem.2020.101415.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: SLA, SU, and AT; data collection and analysis: SLA, SU, and AT; manuscript preparation and editing: SLA, SU, and AT; approval of final manuscript: SLA, SU, and AT.

Corresponding author

Correspondence to Sylvia L. Asa.

Ethics declarations

Ethics Approval

Not applicable.

Consent for Publication

All authors consent to publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asa, S.L., Uccella, S. & Tischler, A. The Unique Importance of Differentiation and Function in Endocrine Neoplasia. Endocr Pathol 34, 382–392 (2023). https://doi.org/10.1007/s12022-023-09762-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-023-09762-4

Keywords

Navigation