Skip to main content

Advertisement

Log in

Co-electrodeposition of Ni-La coating on Ni foam for electrocatalytic hydrogen evolution reaction

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Electrocatalytic water splitting to produce hydrogen is a promising route to provide green hydrogen on a large scale. To explore non-noble metal electrocatalysts with high performance is still a challenge. Herein, a one-step electrodeposition way is developed to construct the heterostructural (NiO-La2O3)/(Ni-La)/NiO/Ni electrocatalysts on Ni foam. The dark Ni-La coating was prepared by co-electrodeposition from an aqueous solution containing LaCl3 and NiCl2 with a molar concentration ratio of 1:5. Among these heterostructural Ni-based electrocatalysts, an excellent HER activity is achieved: an overpotential of 22 mV at the current density of 10 mA cm−2 in 1 M KOH solution. It is demonstrated that the introduction of La significantly reduces the overpotential for HER. The higher the La content in the Ni-La coating of these electrocatalysts, the better the electrocatalytic HER performance was exhibited. This work provides a facile and inexpensive route to prepare Ni-La coating on electrodes in an aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available on request from the corresponding author, upon reasonable request.

References

  1. Turner JA (2004) Science 305(5686):972–974. https://doi.org/10.1126/science.1103197

    Article  CAS  PubMed  Google Scholar 

  2. Mazloomi K, Gomes C (2012) Renew Sust Energ Rev 16(5):3024–3033. https://doi.org/10.1016/j.rser.2012.02.028

    Article  CAS  Google Scholar 

  3. Nikolaidis P, Poullikkas A (2017) Renew Sust Energ Rev 67:597–611. https://doi.org/10.1016/j.rser.2016.09.044

    Article  CAS  Google Scholar 

  4. Davis SJ, Lewis NS, Shaner M, Aggarwal S, Arent D, Azevedo IL, Benson SM, Bradley T, Brouwer J, Chiang, YM, Clack CTM, Cohen A, Doig S, Edmonds J, Fennell P, Field CB, Hannegan B, Hodge BM, Hoffert MI, Ingersoll E, Jaramillo P, Lackner KS, Mach KJ, Mastrandrea M, Ogden J, Peterson PF, Sanchez DL, Sperling D, Stagner J, Trancik JE, Yang CJ, Caldeira K. (2018) Science 360(6396). https://doi.org/10.1126/science.aas9793

  5. Sapountzi FM, Gracia JM, Weststrate CJ, Fredriksson HOA, Niemantsverdriet JW (2017) Prog Energy Combust Sci 58:1–35. https://doi.org/10.1016/j.pecs.2016.09.001

    Article  Google Scholar 

  6. Gong M, Wang DY, Chen CC, Hwang BJ, Dai HJ (2015) Nano Res 9(1):28–46. https://doi.org/10.1007/s12274-015-0965-x

    Article  CAS  Google Scholar 

  7. Safizadeh F, Ghali E, Houlachi G (2015) Int J Hydrogen Energy 40(1):256–274. https://doi.org/10.1016/j.ijhydene.2014.10.109

    Article  CAS  Google Scholar 

  8. Liang Z, Ahn HS, Bard AJ (2017) J Am Chem Soc 139(13):4854–4858. https://doi.org/10.1021/jacs.7b00279

    Article  CAS  PubMed  Google Scholar 

  9. Vij V, Sultan S, Harzandi AM, Meena A, Tiwari JN, Lee WG, Yoon T, Kim KS (2017) ACS Catal 7(10):7196–7225. https://doi.org/10.1021/acscatal.7b01800

    Article  CAS  Google Scholar 

  10. Chen ZJ, Duan XG, Wei W, Wang SB, Ni BJ (2019) J Mater Chem A 7(25):14971–15005. https://doi.org/10.1039/C9TA03220G

    Article  CAS  Google Scholar 

  11. Arul Raj I (1992) Int J Hydrogen Energy 17(6):413–421. https://doi.org/10.1016/0360-3199(92)90185-Y

    Article  Google Scholar 

  12. McCrory CCL, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF (2015) J Am Chem Soc 137(13):4347–4357. https://doi.org/10.1021/ja510442p

    Article  CAS  PubMed  Google Scholar 

  13. Escudero-Escribano M, Malacrida P, Hansen MH, Vej-Hansen UG, Velázquez-Palenzuela A, Tripkovic V, Schiøtz J, Rossmeisl J, Stephens Ifan EL, Chorkendorff I (2016) Science 352(6281):73–76. https://doi.org/10.1126/science.aad8892

    Article  CAS  PubMed  Google Scholar 

  14. Khan MA, Zhao HB, Zou WW, Chen Z, Cao WJ, Fang JH, Xu JQ, Zhang L, Zhang JJ (2018) Electrochem Energy Rev 1(4):483–530. https://doi.org/10.1007/s41918-018-0014-z

    Article  CAS  Google Scholar 

  15. Sun HM, Yan ZH, Liu FM, Xu WC, Cheng FY, Chen J (2020) Adv Mater 32(3):e1806326. https://doi.org/10.1002/adma.201806326

    Article  CAS  PubMed  Google Scholar 

  16. Benavente Llorente V, Diaz LA, Lacconi GI, Abuin GC, Franceschini EA (2022) J Alloys Compd 897:1631. https://doi.org/10.1016/j.jallcom.2021.163161

    Article  CAS  Google Scholar 

  17. Zhang ZJ, Wu YH, Zhang DP (2022) Int J Hydrogen Energy 47(3):1425–1434. https://doi.org/10.1016/j.ijhydene.2021.10.150

    Article  CAS  Google Scholar 

  18. Zhang S, Saji SE, Yin ZY, Zhang HB, Du YP, Yan CH (2021) Adv Mater 33(16):2005988. https://doi.org/10.1002/adma.202005988

    Article  CAS  Google Scholar 

  19. Tao KY, Dan HM, Hai Y, Liu L, Gong Y (2020) Inorg Chem 59(10):7000–7011. https://doi.org/10.1021/acs.inorgchem.0c00483

    Article  CAS  PubMed  Google Scholar 

  20. Wang X, Tang YW, Lee JM, Fu GT (2022) Chem Catal 2(5):967–1008. https://doi.org/10.1016/j.checat.2022.02.007

    Article  CAS  Google Scholar 

  21. Wu L, Zhou ZK, Xiao YF, Xu ZX, Li X (2022) Int J Hydrogen Energy 47(21):11101–11115. https://doi.org/10.1016/j.ijhydene.2022.01.019

    Article  CAS  Google Scholar 

  22. Liu W, Tan WY, He HW, Peng YZ, Chen YX, Yang Y (2022) Energy 250:123831. https://doi.org/10.1016/j.energy.2022.123831

    Article  CAS  Google Scholar 

  23. Sun HM, Yan ZH, Tian CY, Li C, Feng X, Huang R, Lan YH, Chen J, Li PC, Zhang ZH, Du M (2022) Nat Commun 13(1):3857. https://doi.org/10.1038/s41467-022-31561-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Madram A, Mohebbi M, Nasiri M, Sovizi MR (2020) Int J Hydrogen Energy 45(7):3940-3947. https://doi.org/10.1016/j.ijhydene.2019.12.028

  25. Liu W, Tan W, He H, Yang Y (2022) Electrochim Acta 411:140058. https://doi.org/10.1016/j.electacta.2022.140058

    Article  CAS  Google Scholar 

  26. Zhang X, You PF, Luo MQ, Zeng CL (2016) J Electrochem Soc 163(14):D821–D828. https://doi.org/10.1149/2.0971614jes

    Article  CAS  Google Scholar 

  27. Legeai S, Diliberto S, Stein N, Boulanger C, Estager J, Papaiconomou N, Draye M (2008) Electrochem Commun 10(11):1661–1664. https://doi.org/10.1016/j.elecom.2008.08.005

    Article  CAS  Google Scholar 

  28. Gao MY, Yang C, Zhang QB, Zeng JR, Li XT, Hua YX, Xu CY, Li Y (2017) J Electrochem Soc 164(12):D778–D784. https://doi.org/10.1149/2.1751712jes

    Article  CAS  Google Scholar 

  29. Yang YY, Xu CY, Hua YX, Wang MM, Su ZL (2017) Ionics 23(7):1703–1710. https://doi.org/10.1007/s11581-017-1993-1

    Article  CAS  Google Scholar 

  30. Hu Y, Xu JS, Zhong H, Zhang TZ, Tao R, Pan QF, Chen J (2021) Rare Metal Mat Eng 50(7):2288–2292

    CAS  Google Scholar 

  31. Lokhande CD, Jadhav MS, Pawar SH (1988) Met Finish 86(11):53–54

    CAS  Google Scholar 

  32. Lokhande CD, Madhale RD, Pawar SH (1988) Met Finish 86(8):23–25

    CAS  Google Scholar 

  33. Jundale SB, Lokhande CD (1994) Mater Chem Phys 38(4):325–331. https://doi.org/10.1016/0254-0584(94)90208-9

    Article  CAS  Google Scholar 

  34. Kumbhar PP, Lokhande CD (1994) Met Finish 92(11):70–72

    CAS  Google Scholar 

  35. Dong J, Shi HY, Deng J, Zhang YQ (2001) Acta Phys-chim Sin 17(11):1053–1056. https://doi.org/10.3866/pku.Whxb20011119

    Article  CAS  Google Scholar 

  36. Chen WX, Cheng DH, Liu SL, Guo HT (2002) Trans Nonferr Metal Soc 12(2):269–272

    CAS  Google Scholar 

  37. Li N, Chen WZ, Lu LR, Gao CH (2018). Coatings. https://doi.org/10.3390/coatings8090299

    Article  Google Scholar 

  38. Zhang TZ, Wu JL, Tao R, Pan QF, Liu XA, Hu Y, Jiang CL, Ye XQ, Chen J (2022) Appl Surf Sci 585:152757. https://doi.org/10.1016/j.apsusc.2022.152757

    Article  CAS  Google Scholar 

  39. Toghraei A, Shahrabi T, Barati DG (2020). Electrochim Acta. https://doi.org/10.1016/j.electacta.2020.135643

    Article  Google Scholar 

  40. Wu YH, Zhang Y, Wang YX, He Z, Gu ZJ, You SC (2021) Int J Hydrogen Energ 46(53):26930–26939. https://doi.org/10.1016/j.ijhydene.2021.05.189

    Article  CAS  Google Scholar 

  41. Zhu YN, Chen BQ, Cheng TS, Du C, Zhang SM (2020) J Electroanal Chem 878:114552. https://doi.org/10.1016/j.jelechem.2020.114552

    Article  CAS  Google Scholar 

  42. Zhao XR, Yin FX, He XB, Chen BH, Li GR (2020) Electrochim Acta 363:137230. https://doi.org/10.1016/j.electacta.2020.137230

    Article  CAS  Google Scholar 

  43. Hu J, Li SW, Li YZ, Wang J, Du YC, Li ZH, Han XJ, Sun JM, Xu P (2020) J Mater Chem A 8(44):23323–23329. https://doi.org/10.1039/D0TA08735A

    Article  CAS  Google Scholar 

  44. Zhao B, Song JS, Liu P, Xu WW, Fang T, Jiao Z, Zhang HJ, Jiang Y (2011) J Mater Chem 21(46):18792–18798. https://doi.org/10.1039/C1JM13016A

    Article  CAS  Google Scholar 

  45. Sunny A, Balasubramanian K (2021) J Raman Spectrosc 52(4):833–842. https://doi.org/10.1002/jrs.6067

    Article  CAS  Google Scholar 

  46. Yang GJ, Han T, Lu XJ, Yi JH, Tan SL, Fang D (2022). J Alloys Compd. https://doi.org/10.1016/j.jallcom.2021.163005

    Article  Google Scholar 

  47. Zhou J, Meng XH, Zhang R, Liu HY, Liu ZC (2021) Electrocatalysis 12(6):628–640. https://doi.org/10.1007/s12678-021-00688-1

    Article  CAS  Google Scholar 

  48. Yang JG, Xu SX, Chen WH, Zang J, Zhang JM (2012) J Electroanal Chem 670:62–66. https://doi.org/10.1016/j.jelechem.2012.01.012

    Article  CAS  Google Scholar 

  49. Jakšić MM (1984) Electrochim Acta 29(11):1539–1550. https://doi.org/10.1016/0013-4686(84)85007-0

    Article  Google Scholar 

  50. Jakšić MM (1987) Int J Hydrogen Energ 12(11):727–752. https://doi.org/10.1016/0360-3199(87)90090-5

    Article  Google Scholar 

  51. Wang J, Mao SJ, Liu ZY, Wei ZZ, Wang HY, Chen YQ, Wang Y (2017) ACS Appl Mater Interfaces 9(8):7139–7147. https://doi.org/10.1021/acsami.6b15377

    Article  CAS  PubMed  Google Scholar 

  52. Faid AY, Barnett AO, Seland F, Sunde S (2020) Electrochim Acta 361:137040. https://doi.org/10.1016/j.electacta.2020.137040

    Article  CAS  Google Scholar 

  53. Liu W, Tan W, He H, Peng Y (2022) Energy. https://doi.org/10.1016/j.energy.2022.123831

Download references

Funding

This work was supported by the Natural Science Foundation of China (22102162), Discipline Development Foundation of Science and Technology on Surface Physics and Chemistry Laboratory (XKFZ202009), National Key Research and Development Program (2017YFE0301506), and Foundation from Institute of Materials CAEP (TP01201603, TP03201703).

Author information

Authors and Affiliations

Authors

Contributions

Yi Hu contributed to investigation, methodology, conceptualization, data analysis, and writing draft. Jingsong Xu contributed to funding acquisition, conceptualization, and methodology. Tianzhu Zhang, Hang Zhong, Jun Chen, Xinai Liu, Qifa Pan, Ruidong Liu and Chunli Jiang contributed to investigation and methodology. Jun Chen contributed to funding acquisition, conceptualization, data analysis, supervision, and writing draft. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Jun Chen.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare that they have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8447 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Xu, J., Zhang, T. et al. Co-electrodeposition of Ni-La coating on Ni foam for electrocatalytic hydrogen evolution reaction. Transit Met Chem 48, 125–133 (2023). https://doi.org/10.1007/s11243-023-00529-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-023-00529-8

Navigation