Skip to main content
Log in

Time-constrained indoor keyword-aware routing: foundations and extensions

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

With the increasingly available indoor positioning technologies, indoor location-based services (LBS) are becoming popular. Among indoor LBS applications, indoor routing is particularly in demand. In the literature, there are several existing studies on indoor keyword-aware routing queries, each considering different criteria when finding an optimal route. However, none of these studies explicitly constraint the time budget for the route. In this paper, we propose a new problem formulation TIKRQ that considers the time needed for a user to complete the route, in addition to other criteria such as static cost and textual relevance. A set-based search algorithm and effective pruning strategies are proposed as the foundations of processing TIKRQ. To further enhance the practicability of TIKRQ, we study the extensions of TIKRQ and propose efficient solutions. First, we present two TIKRQ variants, namely preferred visiting order and absence of a target point. Second, we present a session-based TIKRQ that keeps track of and refines a user’s routing results when the user changes the query parameters. We conduct extensive experiments on both real and synthetic datasets to verify the efficiency of our proposals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Algorithm 5
Algorithm 6
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50

Similar content being viewed by others

Data Availability

The code used and datasets generated during and/or analysed during the current study are available in the GitHub repository, https://github.com/harryckh/TIKRQ.

Notes

  1. https://en.wikipedia.org/wiki/Hong_Kong_International_Airport_Automated_People_Mover

  2. We use a universal walking speed in this paper for ease of illustration, but the proposed method can be easily adapted to the walking speed tailored for partitions.

  3. We do not consider the extreme case that the source and target points are located in the transport, but our technique can easily support it.

  4. Any small value can be used here as long as the original i-word w has a higher score. The routes with w will have higher rankings than those with \(w_{i}^{\prime }\).

  5. https://longaspire.github.io/s/fp.html

  6. https://longaspire.github.io/s/hkdata.html

  7. http://www.keyworddiscovery.com/keyword-stats.html

  8. https://github.com/harryckh/TIKRQ

References

  1. Basiri A, Lohan ES, Moore T, Winstanley A, Peltola P, Hill C, Amirian P, Silva PF (2017) Indoor location based services challenges, requirements and usability of current solutions. Comput Sci Rev 24:1–12

    Article  Google Scholar 

  2. Cao X, Chen L, Cong G, Xiao X (2012) Keyword-aware optimal route search. PVLDB 5(11):1136–1147

    Google Scholar 

  3. Cary A, Wolfson O, Rishe N (2010) Efficient and scalable method for processing top-k spatial boolean queries. In: SSDBM, Springer, pp 87–95

  4. Chan HK-H, Long C, Wong RC-W (2018) On generalizing collective spatial keyword queries. TKDE 30(9):1712–1726

    Google Scholar 

  5. Chan HK-H, Liu T, Li H, Lu H (2021) Time-constrained indoor keyword-aware routing. In: SSTD, pp 74–84

  6. Chan HK-H, Li H, Li X, Lu H (2022) Continuous social distance monitoring in indoor space. PVLDB 15(7):1390–1402

    Google Scholar 

  7. Chen C, Zhang D, Guo B, Ma X, Pan G, Wu Z (2014) Tripplanner: personalized trip planning leveraging heterogeneous crowdsourced digital footprints. IEEE Trans Intell Transp Syst 16(3):1259–1273

    Article  Google Scholar 

  8. Chen H, Ku W-S, Sun M-T, Zimmermann R (2008) The multi-rule partial sequenced route query. SIGSPATIAL, pp 1–10

  9. Cong G, Jensen CS (2009) Wu, d.: Efficient retrieval of the top-k most relevant spatial web objects. PVLDB 2(1):337–348

    Google Scholar 

  10. De Felipe I, Hristidis V, Rishe N (2008) Keyword search on spatial databases. In: ICDE, IEEE, pp 656–665

  11. Fakas GJ, Cai Y, Cai Z, Mamoulis N (2018) Thematic ranking of object summaries for keyword search. DKE 113:1–17

    Article  Google Scholar 

  12. Feng Z, Liu T, Li H, Lu H, Shou L, Xu J (2020) Indoor top-k keyword-aware routing query. In: ICDE, IEEE, pp 1213–1224

  13. Golden BL, Levy L (1987) Vohra, r.: the orienteering problem. Naval Research Logistics (NRL) 34(3):307–318

    Article  MATH  Google Scholar 

  14. Guo T, Cao X, Cong G (2015) Efficient algorithms for answering the m-closest keywords query. In: SIGMOD, ACM, pp 405–418

  15. Kanza Y, Levin R, Safra E, Sagiv Y (2009) An interactive approach to route search. In: SIGSPATIAL, pp 408–411

  16. Kanza Y, Levin R, Safra E, Sagiv Y (2010) Interactive route search in the presence of order constraints. PVLDB 3(1-2):117–128

    Google Scholar 

  17. Li F, Cheng D, Hadjieleftheriou M, Kollios G, Teng S-H (2005) On trip planning queries in spatial databases. In: SSTD, Springer, pp 273–290

  18. Li H, Lu H, Shou L, Chen G, Chen K (2018a) Finding most popular indoor semantic locations using uncertain mobility data. TKDE 31(11):2108–2123

    Google Scholar 

  19. Li H, Lu H, Shou L, Chen G, Chen K (2018b) In search of indoor dense regions: an approach using indoor positioning data. TKDE 30(8):1481–1495

    Google Scholar 

  20. Li H, Lu H, Cheema MA, Shou L, Chen G (2020) Indoor mobility semantics annotation using coupled conditional markov networks. In: ICDE, IEEE, pp 1441–1452

  21. Li J, Yang YD, Mamoulis N (2012) Optimal route queries with arbitrary order constraints. TKDE 25(5):1097–1110

    Google Scholar 

  22. Li W, Cao J, Guan J, Yiu ML, Zhou S (2016) Retrieving routes of interest over road networks. In: WAIM, Springer, pp 109–123

  23. Li Y, Yang S, Cheema MA, Shao Z, Lin X (2021) Indoorviz: A demonstration system for indoor spatial data management. In: SIGMOD, pp 2755–2759

  24. Li Y, Ma G, Yang S, Wang L, Zhang J (2022) Influence computation for indoor spatial objects. In: DASFAA, Springer, pp 259–267

  25. Liu T, Feng Z, Li H, Lu H, Cheema MA, Cheng H, Xu J (2020) Shortest path queries for indoor venues with temporal variations. In: ICDE, IEEE, pp 2014–2017

  26. Liu T, Li H, Lu H, Cheema MA, Shou L (2021) Towards crowd-aware indoor path planning. PVLDB 14(8):1365–1377

    Google Scholar 

  27. Lu H, Cao X, Jensen CS (2012) A foundation for efficient indoor distance-aware query processing. In: ICDE, IEEE, pp 438–449

  28. Lu H, Yang B, Jensen CS (2011) Spatio-temporal joins on symbolic indoor tracking data. In: ICDE, IEEE, pp 816–827

  29. Luo W, Jin P, Yue L (2016) Time-constrained sequenced route query in indoor spaces. In: APWeb, Springer, pp 129–140

  30. Qin L, Yu JX, Chang L (2012) Diversifying top-k results. PVLDB 5(11):1124–1135

    Google Scholar 

  31. Rocha-Junior JB, Gkorgkas O, Jonassen S, Nørvåg K (2011) Efficient processing of top-k spatial keyword queries. In: SSTD, Springer, pp 205–222

  32. Rose S, Engel D, Cramer N, Cowley W (2010) Automatic keyword extraction from individual documents. Text Min Appl Theory 1:1–20

    Google Scholar 

  33. Roy SB, Das G, Amer-Yahia S, Yu C (2011) Interactive itinerary planning. In: 2011 IEEE 27th International conference on data engineering, IEEE, pp 15–26

  34. Salgado C (2018) Keyword-aware skyline routes search in indoor venues. In: SIGSPATIAL-ISA, pp 25–31

  35. Salgado C, Cheema MA, Taniar D (2018) An efficient approximation algorithm for multi-criteria indoor route planning queries. In: SIGSPATIAL, pp 448–451

  36. Shao Z, Cheema MA, Taniar D (2018) Trip planning queries in indoor venues. Comput J 61(3):409–426

    Article  MathSciNet  Google Scholar 

  37. Shao Z, Cheema MA, Taniar D, Lu H (2016) VIP-tree: an effective index for indoor spatial queries. PVLDB 10(4):325–336

    Google Scholar 

  38. Shao Z, Cheema MA, Taniar D, Lu H, Yang S (2020) Efficiently processing spatial and keyword queries in indoor venues. TKDE 33(9):3229–3244

    Google Scholar 

  39. Sharifzadeh M, Kolahdouzan M, Shahabi C (2008) The optimal sequenced route query. VLDBJ 17(4):765–787

    Article  Google Scholar 

  40. Sun J, Wang B, Yang X (2021) Practical approximate indoor nearest neighbour locating with crowdsourced rssis. World Wide Web 24(3):747–779

    Article  Google Scholar 

  41. Xie X, Lu H, Pedersen TB (2013) Efficient distance-aware query evaluation on indoor moving objects. In: ICDE, IEEE, pp 434–445

  42. Xie X, Lu H, Pedersen TB (2014) Distance-aware join for indoor moving objects. TKDE 27(2):428–442

    Google Scholar 

  43. Xu H, Gu Y, Sun Y, Qi J, Yu G, Zhang R (2020) Efficient processing of moving collective spatial keyword queries. VLDBJ 29(4):841–865

    Article  Google Scholar 

  44. Yang B, Lu H, Jensen CS (2009) Scalable continuous range monitoring of moving objects in symbolic indoor space. In: CIKM, pp 671–680

  45. Yuan W, Schneider M (2010) Supporting continuous range queries in indoor space. In: MDM, IEEE, pp 209–214

  46. Zeng Y, Chen X, Cao X, Qin S, Cavazza M, Xiang Y (2015) Optimal route search with the coverage of users’ preferences. In: IJCAI, pp 2118–2124

  47. Zhang C, Zhang Y, Zhang W, Lin X, Cheema MA, Wang X (2014) Diversified spatial keyword search on road networks. In: EDBT, pp 367–378

  48. Zheng B, Su H, Hua W, Zheng K, Zhou X, Li G (2017) Efficient clue-based route search on road networks. TKDE 29(9):1846–1859

    Google Scholar 

  49. Zheng K, Su H, Zheng B, Shang S, Xu J, Liu J, Zhou X (2015) Interactive top-k spatial keyword queries. In: ICDE, IEEE, pp 423–434

Download references

Acknowledgments

Huan Li’s work was done with the support of Aalborg University.

Funding

This work was supported by Independent Research Fund Denmark (Grant No. 8022-00366B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Kai-Ho Chan.

Ethics declarations

Conflict of Interests

Harry Kai-Ho Chan is affiliated to the Information School, University of Sheffield, United Kingdom. Partial of his work was done at the Department of People and Technology, Roskilde University, Denmark. Tiantian Liu and Hua Lu are affiliated to the Department of People and Technology, Roskilde University, Denmark. Huan Li is affiliated to the Department of Computer Science, Aalborg University, Denmark.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, H.KH., Liu, T., Li, H. et al. Time-constrained indoor keyword-aware routing: foundations and extensions. Geoinformatica 27, 375–426 (2023). https://doi.org/10.1007/s10707-023-00489-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-023-00489-2

Keywords

Navigation