Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) April 17, 2023

Ternary orthorhombic Laves phases Sr2Pd3Sn, Eu2Pd3Sn and Eu2Pd3In

  • Joshua Wiethölter , Aylin Koldemir , Theresa Block , Maximilian Kai Reimann , Steffen Klenner and Rainer Pöttgen EMAIL logo

Abstract

The ternary Laves phases Sr2Pd3Sn, Eu2Pd3Sn and Eu2Pd3In were synthesized by induction melting of the elements in sealed tantalum ampoules. The polycrystalline products were characterized through their powder X-ray diffraction patterns. The structure of Eu2Pd3Sn was refined from single crystal X-ray diffractometer data: Mg2MnGa3 type, Cmcm, a = 583.36(5), b = 908.31(7), c = 958.06(8) pm, wR2 = 0.0366, 557 F2 values, 23 variables. The palladium and tin atoms show the inverse coloring on the network of condensed tetrahedra of Mg2MnGa3, i.e., MnGa3 versus Pd3Sn. Refinement of the occupancy parameters revealed small defects for the europium site, leading to composition Eu1.962(6)Pd3Sn for the studied crystal. Sr2Pd3Sn is a Pauli paramagnet and Eu2Pd3Sn shows Curie-Weiss paramagnetism (7.86(1) µB Eu atom−1 and ΘP = 48.1(1) K). Ferromagnetic ordering is observed below TC = 46.1(1) K. The 119Sn and 151Eu Mössbauer spectra of Sr2Pd3Sn and Eu2Pd3Sn are discussed with respect to electron density changes as a function of the tin content and the ionicity in the sequence of the stannides Sr2Pd3Sn/Eu2Pd3Sn → Sr2Pd2Sn/Eu2Pd2Sn → EuPdSn → EuPdSn2.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgments

We thank Dipl.-Ing. J. Kösters for collecting the single crystal data, M. Sc. C. Paulsen for the EDX analyses and M. Sc. L. Schumacher for experimental help with the susceptibility measurements.

  1. Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Friauf, J. B. J. Am. Chem. Soc. 1927, 49, 3107–3114; https://doi.org/10.1021/ja01411a017.Search in Google Scholar

2. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2022/23); ASM International®: Materials Park, Ohio (USA), 2022.Search in Google Scholar

3. Tarschisch, L., Titow, A. T., Garjanow, F. K. Phys. Z. Sowjetunion 1934, 5, 503–510.Search in Google Scholar

4. Lieser, K. H., Witte, H. Z. Metallkd. 1952, 43, 396–401.10.1515/ijmr-1952-431103Search in Google Scholar

5. Wells, A. F. Structural Inorganic Chemistry, 5th ed.; Oxford Science Publication, Clarendon Press: Oxford, 1984.Search in Google Scholar

6. Ferro, R., Saccone, A. Intermetallic Chemistry; Elsevier: Amsterdam, 2008.Search in Google Scholar

7. Steurer, W., Dshemuchadse, J. Intermetallics: Structures, Properties, and Statistics, IUCr Monographs on Crystallography, Volume 26; Oxford University Press: New York, 2016.10.1093/acprof:oso/9780198714552.001.0001Search in Google Scholar

8. Pöttgen, R., Johrendt, D. Intermetallics, 2nd ed.; De Gruyter: Berlin, 2019.10.1515/9783110636727Search in Google Scholar

9. Parthé, E. Elements of Inorganic Structural Chemistry: Selected Efforts to Predict Structural Features, 2nd ed.; Sutter Parthé K. Publisher: Petit-Lancy, Switzerland, 1996. http://archive-ouverte.unige.ch/unige:97818 (accessed Jun 22, 2020).Search in Google Scholar

10. Gulay, N. L., Kalychak, Ya. M., Pöttgen, R. Z. Anorg. Allg. Chem. 2021, 647, 75–80; https://doi.org/10.1002/zaac.202000362.Search in Google Scholar

11. Komura, Y., Nakaue, A., Mitarai, M. Acta Crystallogr. 1972, B28, 727–732; https://doi.org/10.1107/s0567740872003097.Search in Google Scholar

12. Gulay, N. L., Kalychak, Ya. M., Pöttgen, R. Z. Naturforsch. 2021, 76b, 345–354.Search in Google Scholar

13. Noréus, D., Eriksson, L., Göthe, L., Werner, P.-E. J. Less-Common Met. 1985, 107, 345–349; https://doi.org/10.1016/0022-5088(85)90093-1.Search in Google Scholar

14. Seidel, S., Janka, O., Benndorf, C., Mausolf, B., Haarmann, F., Eckert, H., Heletta, L., Pöttgen, R. Z. Naturforsch. 2017, 72b, 289–303; https://doi.org/10.1515/znb-2016-0265.Search in Google Scholar

15. Osters, O., Nilges, T., Schöneich, M., Schmidt, P., Rothballer, J., Pielnhofer, F., Weihrich, R. Inorg. Chem. 2012, 51, 8119–8127; https://doi.org/10.1021/ic3005213.Search in Google Scholar PubMed

16. Seidel, S., Pöttgen, R. Z. Anorg. Allg. Chem. 2017, 643, 261–265; https://doi.org/10.1002/zaac.201600422.Search in Google Scholar

17. Siggelkow, L., Hlukhyy, V., Fässler, T. F. Z. Anorg. Allg. Chem. 2017, 643, 1424–1430; https://doi.org/10.1002/zaac.201700180.Search in Google Scholar

18. Witte, H. Metallwirtsch. Metallwiss. Metalltech. 1939, 18, 459–463.Search in Google Scholar

19. Hatt, B. A. Acta Crystallogr. 1961, 14, 119–123; https://doi.org/10.1107/s0365110x61000516.Search in Google Scholar

20. Pavlyuk, N., Chumak, I., Pavlyuk, V., Ehrenberg, H., Indris, S., Hlukhyy, V., Pöttgen, R. Z. Naturforsch. 2022, 77b, 727–733; https://doi.org/10.1515/znb-2022-0109.Search in Google Scholar

21. Parthé, E. Elements of Inorganic Structural Chemistry; Pöge: Leipzig, 1990.Search in Google Scholar

22. Johnston, R. L., Hoffmann, R. Z. Anorg. Allg. Chem. 1992, 616, 105–120; https://doi.org/10.1002/zaac.19926161017.Search in Google Scholar

23. Nesper, R., Miller, G. J. J. Alloys Compd. 1993, 197, 109–121; https://doi.org/10.1016/0925-8388(93)90628-z.Search in Google Scholar

24. Amerioun, S., Simak, S. I., Häussermann, U. Inorg. Chem. 2003, 42, 1467–1474; https://doi.org/10.1021/ic020596m.Search in Google Scholar

25. Roy, N., Kuila, S. K., Mondal, A., Sikdar, R., Harshit, G. S., Wang, F., Jana, P. P. J. Solid State Chem. 2022, 313, 123283; https://doi.org/10.1016/j.jssc.2022.123283.Search in Google Scholar

26. Fukui, H., Hirao, N., Ohishi, Y., Baron, A. Q. R. J. Phys.: Condens. Matter 2010, 22, 095401; https://doi.org/10.1088/0953-8984/22/9/095401.Search in Google Scholar

27. Wiethölter, J., Koldemir, A., Reimann, M. K., Block, T., Kösters, J., Janka, O., Pöttgen, R. Z. Naturforsch. 2023, 78b, 301–306; https://doi.org/10.1515/znb-2023-0015.Search in Google Scholar

28. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachz. 1999, 43, 133–136.Search in Google Scholar

29. Kußmann, D., Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 1998, 624, 1727–1735; https://doi.org/10.1002/(sici)1521-3749(1998110)624:11<1727::aid-zaac1727>3.0.co;2-0.10.1002/(SICI)1521-3749(1998110)624:11<1727::AID-ZAAC1727>3.0.CO;2-0Search in Google Scholar

30. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar

31. OriginPro 2016G (version 9.3.2.303); OriginLab Corporation: Northampton, Massachusetts (USA), 2016.Search in Google Scholar

32. CORELDRAW Graphics Suite 2017 (version 19.0.0.328); Corel Corporation: Ottawa, Ontario (Canada), 2017.Search in Google Scholar

33. Long, G. J., Cranshaw, T. E., Longworth, G. Moessbauer Eff. Ref. Data J. 1983, 6, 42–49.Search in Google Scholar

34. Brand, R. A. WinNormos for Igor6 (version for Igor6.2 or above: 22.02.2017); Universität Duisburg: Duisburg, Germany, 2017.Search in Google Scholar

35. Klenner, S., Reimann, M. K., Pöttgen, R. Z. Kristallogr. 2021, 236, 201–214; https://doi.org/10.1515/zkri-2021-2031.Search in Google Scholar

36. Palatinus, L. Acta Crystallogr. 2013, B69, 1–16; https://doi.org/10.1107/s0108768112051361.Search in Google Scholar

37. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

38. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1515/zkri-2014-1737.Search in Google Scholar

39. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

40. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar

41. Frank, F. C., Kasper, J. S. Acta Crystallogr. 1958, 11, 184–190; https://doi.org/10.1107/s0365110x58000487.Search in Google Scholar

42. Frank, F. C., Kasper, J. S. Acta Crystallogr. 1959, 12, 483–499; https://doi.org/10.1107/s0365110x59001499.Search in Google Scholar

43. Pöttgen, R. Z. Naturforsch. 1996, 51b, 806–810; https://doi.org/10.1515/znb-1996-0608.Search in Google Scholar

44. Nakamura, A., Akamine, H., Ashitomi, Y., Honda, F., Aoki, D., Takeuchi, T., Matsubayashi, K., Uwatoko, Y., Tatetsu, Y., Maehira, T., Hedo, M., Nakama, T., Ōnuki, Y. J. Phys. Soc. Jpn. 2016, 85, 084705; https://doi.org/10.7566/jpsj.85.084705.Search in Google Scholar

45. Huppertz, H., Kotzyba, G., Hoffmann, R.-D., Pöttgen, R. J. Solid State Chem. 2002, 169, 155–159; https://doi.org/10.1016/s0022-4596(02)00051-8.Search in Google Scholar

46. Heymann, G., Heying, B., Rodewald, U. Ch., Janka, O., Huppertz, H., Pöttgen, R. J. Solid State Chem. 2016, 236, 138–146; https://doi.org/10.1016/j.jssc.2015.06.044.Search in Google Scholar

47. Lueken, H. Magnetochemie; Teubner: Stuttgart, 1999.10.1007/978-3-322-80118-0Search in Google Scholar

48. Matthias, B. T., Bozorth, R. M., Van Vleck, J. H. Phys. Rev. Lett. 1961, 7, 160–161; https://doi.org/10.1103/physrevlett.7.160.Search in Google Scholar

49. McWhan, D. B., Souers, P. C., Jura, G. Phys. Rev. 1966, 143, 385–389; https://doi.org/10.1103/physrev.143.385.Search in Google Scholar

50. Stroka, B., Wosnitza, J., Scheer, E., Löhneysen, v. H., Park, W., Fischer, K. Z. Phys. B – Condens. Matter 1992, 89, 39–43; https://doi.org/10.1007/bf01320827.Search in Google Scholar

51. Giovannini, M., Čurlík, I., Freccero, R., Solokha, P., Reiffers, M., Sereni J. Inorg. Chem. 2021, 60, 8085–8092; https://doi.org/10.1021/acs.inorgchem.1c00678.Search in Google Scholar PubMed PubMed Central

52. Müllmann, R., Ernet, U., Mosel, B. D., Eckert, H., Kremer, R. K., Hoffmann, R.-D., Pöttgen, R. J. Mater. Chem. 2001, 11, 1133–1140; https://doi.org/10.1039/b100055l.Search in Google Scholar

53. Lemoine, P., Cadogan, J. M., Ryan, D. H., Giovannini, M. J. Phys.: Condens. Matter 2012, 24, 236004; https://doi.org/10.1088/0953-8984/24/23/236004.Search in Google Scholar PubMed

54. Čurlík, I., Giovannini, M., Gastaldo, F., Strydom, A. M., Reiffers, M., Sereni, J. G. J. Phys.: Condens. Matter 2018, 30, 495802; https://doi.org/10.1088/1361-648x/aae7ae.Search in Google Scholar PubMed

55. Schwickert, C., Winter, F., Pöttgen, R. Z. Naturforsch. 2014, 69b, 775–785; https://doi.org/10.5560/znb.2014-4098.Search in Google Scholar

56. Čurlík, I., Zapotoková, M., Gastaldo, F., Reiffers, M., Sereni, J. G., Giovannini, M. Phys. Status Solidi B 2021, 258, 2000633; https://doi.org/10.1002/pssb.202000633.Search in Google Scholar

57. Solokha, P., Čurlík, I., Giovannini, M., Lee-Hone, N. R., Reiffers, M., Ryan, D. H., Saccone, A. J. Solid State Chem. 2011, 184, 2498–2505; https://doi.org/10.1016/j.jssc.2011.07.031.Search in Google Scholar

58. Čurlík, I., Gastaldo, F., Giovannini, M., Strydom, A. M., Reiffers, M. Acta Phys. Polon. A 2017, 131, 1003–1005; https://doi.org/10.12693/aphyspola.131.1003.Search in Google Scholar

59. Engel, S., Gießelmann, E. C. J., Pöttgen, R., Janka, O. Rev. Inorg. Chem. 2023, 43; https://doi.org/10.1515/revic-2023-0003.Search in Google Scholar

60. Lippens, P. E. Phys. Rev. B 1999, 60, 4576–4586; https://doi.org/10.1103/physrevb.60.4576.Search in Google Scholar

61. Pöttgen, R. Z. Naturforsch. 2006, 61b, 677–698; https://doi.org/10.1515/znb-2006-0607.Search in Google Scholar

Received: 2023-03-17
Accepted: 2023-03-31
Published Online: 2023-04-17
Published in Print: 2023-05-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2023-0014/html
Scroll to top button