Skip to main content

Advertisement

Log in

Computational insights into ligand–induced G protein and β-arrestin signaling of the dopamine D1 receptor

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The dopamine D1 receptor (D1R), is a class A G protein coupled-receptor (GPCR) which has been a promising drug target for psychiatric and neurological disorders such as Parkinson’s disease (PD). Previous studies have suggested that therapeutic effects can be realized by targeting the β-arrestin signaling pathway of dopamine receptors, while overactivation of the G protein-dependent pathways leads to side effects, such as dyskinesias. Therefore, it is highly desirable to develop a D1R ligand that selectively regulates the β-arrestin pathway. Currently, most D1R agonists are signaling-balanced and stimulate both G protein and β-arrestin pathways, with a few reports of G protein biased ligands. However, identification and characterization of β-arrestin biased D1R agonists has been a challenge thus far. In this study, we implemented Gaussian accelerated molecular dynamics (GaMD) simulations to provide valuable computational insights into the possible underlying molecular mechanism of the different signaling properties of two catechol and two non-catechol D1R agonists that are either G protein biased or signaling-balanced. Dynamic network analysis further identified critical residues in the allosteric signaling network of D1R for each ligand at different conformational or binding states. Some of these residues are crucial for G protein or arrestin signals of GPCRs based on previous studies. Finally, we provided a molecular design strategy which can be utilized by medicinal chemists to develop potential β-arrestin biased D1R ligands. The proposed hypotheses are experimentally testable and can guide the development of safer and more effective medications for a variety of CNS disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

cMD:

Conventional MD

D1R:

Dopamine D1 receptor

GaMD:

Gaussian accelerated molecular dynamics

GPCR:

G protein-coupled receptor

MD:

Molecular dynamics

SFSR:

Structure-functional selectivity relationships

References

  1. Santos R, Ursu O, Gaulton A et al (2017) A comprehensive map of molecular drug targets. Nat Rev Drug Discov 16:19–34. https://doi.org/10.1038/nrd.2016.230

    Article  CAS  PubMed  Google Scholar 

  2. Latorraca NR, Venkatakrishnan AJ, Dror RO (2017) GPCR dynamics: structures in motion. Chem Rev 117:139–155. https://doi.org/10.1021/acs.chemrev.6b00177

    Article  CAS  PubMed  Google Scholar 

  3. Tan L, Yan W, McCorvy JD, Cheng J (2018) Biased ligands of g protein-coupled receptors (GPCRs): structure-functional selectivity relationships (SFSRs) and therapeutic potential. J Med Chem 61:9841–9878. https://doi.org/10.1021/acs.jmedchem.8b00435

    Article  CAS  PubMed  Google Scholar 

  4. Harris SS, Urs NM (2021) Targeting β-Arrestins in the Treatment of psychiatric and neurological disorders. CNS Drugs 35:253–264. https://doi.org/10.1007/s40263-021-00796-y

    Article  CAS  PubMed  Google Scholar 

  5. Beaulieu J-M, Espinoza S, Gainetdinov RR (2015) Dopamine receptors – IUPHAR Review 13. Br J Pharmacol 172:1–23. https://doi.org/10.1111/bph.12906

    Article  CAS  PubMed  Google Scholar 

  6. Beaulieu J-M, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217. https://doi.org/10.1124/pr.110.002642

    Article  CAS  PubMed  Google Scholar 

  7. Klein MO, Battagello DS, Cardoso AR et al (2019) Dopamine: functions, signaling, and association with neurological diseases. Cell Mol Neurobiol 39:31–59. https://doi.org/10.1007/s10571-018-0632-3

    Article  PubMed  Google Scholar 

  8. Felsing DE, Jain MK, Allen JA (2019) Advances in dopamine D1 receptor ligands for neurotherapeutics. Curr Top Med Chem 19:1365–1380. https://doi.org/10.2174/1568026619666190712210903

    Article  CAS  PubMed  Google Scholar 

  9. Zhang A, Neumeyer JL, Baldessarini RJ (2007) Recent progress in development of dopamine receptor subtype-selective agents: potential therapeutics for neurological and psychiatric disorders. Chem Rev 107:274–302. https://doi.org/10.1021/cr050263h

    Article  CAS  PubMed  Google Scholar 

  10. Porras G, Berthet A, Dehay B et al (2012) PSD-95 expression controls l-DOPA dyskinesia through dopamine D1 receptor trafficking. J Clin Invest 122:3977–3989. https://doi.org/10.1172/JCI59426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rascol O, Nutt JG, Blin O et al (2001) Induction by dopamine D1 receptor agonist ABT-431 of dyskinesia similar to levodopa in patients with parkinson disease. Arch Neurol 58:249–254. https://doi.org/10.1001/archneur.58.2.249

    Article  CAS  PubMed  Google Scholar 

  12. Delfino MA, Stefano AV, Ferrario JE et al (2004) Behavioral sensitization to different dopamine agonists in a parkinsonian rodent model of drug-induced dyskinesias. Behav Brain Res 152:297–306. https://doi.org/10.1016/j.bbr.2003.10.009

    Article  CAS  PubMed  Google Scholar 

  13. Urs NM, Bido S, Peterson SM et al (2015) Targeting β-arrestin2 in the treatment of l-DOPA–induced dyskinesia in Parkinson’s disease. PNAS 112:E2517–E2526. https://doi.org/10.1073/pnas.1502740112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gray DL, Allen JA, Mente S et al (2018) Impaired β-arrestin recruitment and reduced desensitization by non-catechol agonists of the D1 dopamine receptor. Nat Commun 9:1–17. https://doi.org/10.1038/s41467-017-02776-7

    Article  CAS  Google Scholar 

  15. Davoren JE, Nason D, Coe J et al (2018) Discovery and lead optimization of atropisomer D1 agonists with reduced desensitization. J Med Chem 61:11384–11397. https://doi.org/10.1021/acs.jmedchem.8b01622

    Article  CAS  PubMed  Google Scholar 

  16. DAVOREN JE, Dounay AB, EFREMOV IV et al (2014) Heteroaromatic compounds as dopamine d1 ligands. WO 2014/072882 A1

  17. Gray DLF, Zhang L, Davoren JE et al (2015) Heteroaromatic compounds and their use as dopamine d1 ligands. WO 2015/162515 A1

  18. Brodney MA, Davoren JE, Dounay AB et al (2014) Heteroaromatic compounds and their use as dopamine d1 ligands. WO 2014/207601 A1.

  19. Coe JW, ALLEN JA, Davoren JE et al (2014) Heteroaromatic compounds and their use as dopamine d1 ligands. WO 2014/072881 A1.

  20. Gray DLF, Zhang L, Brodney MA et al (2015) Heteroaromatic compounds and their use as dopamine d1 ligands. WO 2015/162516 A1.

  21. Davoren JE, Dounay AB, Efremov IV et al (2015) Heteroaromatic compounds and their use as dopamine d1 ligands. WO 2015/162518 A1.

  22. Brodney MA, Davoren JE, Efremov IV et al (2015) Heterocyclic compounds and their use as dopamine d1 ligands. WO 2015/166366 A1.

  23. Gray DLF, Davoren JE, Dounay AB et al (2015) Heteroaromatic compounds and their use as dopamine d1 ligands. WO 2015/166370 A1.

  24. Conroy JL, Free RB, Sibley DR (2015) Identification of G protein-biased agonists that fail to recruit β-arrestin or promote internalization of the D1 dopamine receptor. ACS Chem Neurosci 6:681–692. https://doi.org/10.1021/acschemneuro.5b00020

    Article  CAS  PubMed  Google Scholar 

  25. Martini ML, Liu J, Ray C et al (2019) Defining Structure-functional selectivity relationships (SFSR) for a class of non-catechol dopamine D1 receptor agonists. J Med Chem 62:3753–3772. https://doi.org/10.1021/acs.jmedchem.9b00351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martini ML, Ray C, Yu X et al (2019) Designing Functionally selective noncatechol dopamine D1 receptor agonists with potent in vivo antiparkinsonian activity. ACS Chem Neurosci 10:4160–4182. https://doi.org/10.1021/acschemneuro.9b00410

    Article  CAS  PubMed  Google Scholar 

  27. Wang P, Felsing DE, Chen H et al (2019) Synthesis and pharmacological evaluation of noncatechol G protein biased and unbiased dopamine D1 receptor agonists. ACS Med Chem Lett 10:792–799. https://doi.org/10.1021/acsmedchemlett.9b00050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Park H, Urs AN, Zimmerman J et al (2020) Structure–functional–selectivity relationship studies of novel apomorphine analogs to develop D1R/D2R biased ligands. ACS Med Chem Lett 11:385–392. https://doi.org/10.1021/acsmedchemlett.9b00575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang Y, Lee S-M, Imamura F et al (2021) D1 dopamine receptors intrinsic activity and functional selectivity affect working memory in prefrontal cortex. Mol Psychiatry 26:645–655. https://doi.org/10.1038/s41380-018-0312-1

    Article  CAS  PubMed  Google Scholar 

  30. Li H, Mirabel R, Zimmerman J et al (2022) Structure-functional selectivity relationship studies on A-86929 analogs and small aryl fragments toward the discovery of biased dopamine D1 receptor agonists. ACS Chem Neurosci 13:1818–1831. https://doi.org/10.1021/acschemneuro.2c00235

    Article  CAS  PubMed  Google Scholar 

  31. Zhuang Y, Xu P, Mao C et al (2021) Structural insights into the human D1 and D2 dopamine receptor signaling complexes. Cell 184:931-942.e18. https://doi.org/10.1016/j.cell.2021.01.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xiao P, Yan W, Gou L et al (2021) Ligand recognition and allosteric regulation of DRD1-Gs signaling complexes. Cell 184:943-956.e18. https://doi.org/10.1016/j.cell.2021.01.028

    Article  CAS  PubMed  Google Scholar 

  33. Zhuang Y, Krumm B, Zhang H et al (2021) Mechanism of dopamine binding and allosteric modulation of the human D1 dopamine receptor. Cell Res. https://doi.org/10.1038/s41422-021-00482-0

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sun B, Feng D, Chu ML-H et al (2021) Crystal structure of dopamine D1 receptor in complex with G protein and a non-catechol agonist. Nat Commun 12:3305. https://doi.org/10.1038/s41467-021-23519-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Teng X, Chen S, Nie Y et al (2022) Ligand recognition and biased agonism of the D1 dopamine receptor. Nat Commun 13:3186. https://doi.org/10.1038/s41467-022-30929-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dror RO, Arlow DH, Maragakis P et al (2011) Activation mechanism of the 2-adrenergic receptor. Proc Natl Acad Sci 108:18684–18689. https://doi.org/10.1073/pnas.1110499108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Perez-Aguilar JM, Shan J, LeVine MV et al (2014) A Functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2. J Am Chem Soc 136:16044–16054. https://doi.org/10.1021/ja508394x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kapoor A, Martinez-Rosell G, Provasi D et al (2017) Dynamic and kinetic elements of µ-opioid receptor functional selectivity. Sci Rep 7:11255. https://doi.org/10.1038/s41598-017-11483-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Suomivuori C-M, Latorraca NR, Wingler LM et al (2020) Molecular mechanism of biased signaling in a prototypical G protein–coupled receptor. Science 367:881–887. https://doi.org/10.1126/science.aaz0326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fu W, Shen J, Luo X et al (2007) Dopamine D1 receptor agonist and D2 receptor antagonist effects of the natural product (−)–stepholidine: molecular modeling and dynamics simulations. Biophys J 93:1431–1441. https://doi.org/10.1529/biophysj.106.088500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gong Y, Fu W, Chen K (2012) Dopamine D1 receptor and serotonin 5-HT1A receptor agonist effects of the natural product (–)-stepholidine: molecular modelling and dynamics simulations. Mol Simul 38:970–979. https://doi.org/10.1080/08927022.2012.679619

    Article  CAS  Google Scholar 

  42. Hugo EA, Cassels BK, Fierro A (2017) Functional roles of T3.37 and S5.46 in the activation mechanism of the dopamine D1 receptor. J Mol Model 23:142. https://doi.org/10.1007/s00894-017-3313-0

    Article  CAS  PubMed  Google Scholar 

  43. Ge H, Bian Y, He X et al (2019) Significantly different effects of tetrahydroberberrubine enantiomers on dopamine D1/D2 receptors revealed by experimental study and integrated in silico simulation. J Comput Aided Mol Des 33:447–459. https://doi.org/10.1007/s10822-019-00194-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tang Z-Q, Zhao L, Chen G-X, Chen CY-C (2021) Novel and versatile artificial intelligence algorithms for investigating possible GHSR1α and DRD1 agonists for Alzheimer’s disease. RSC Adv 11:6423–6446. https://doi.org/10.1039/D0RA10077C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miao Y, Feher VA, McCammon JA (2015) Gaussian accelerated molecular dynamics: unconstrained enhanced sampling and free energy calculation. J Chem Theory Comput 11:3584–3595. https://doi.org/10.1021/acs.jctc.5b00436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miao Y, Sinko W, Pierce L et al (2014) Improved reweighting of accelerated molecular dynamics simulations for free energy calculation. J Chem Theory Comput 10:2677–2689. https://doi.org/10.1021/ct500090q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Miao Y, McCammon JA (2016) Graded activation and free energy landscapes of a muscarinic G-protein–coupled receptor. PNAS 113:12162–12167. https://doi.org/10.1073/pnas.1614538113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Miao Y, McCammon JA (2018) Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor. PNAS 115:3036–3041. https://doi.org/10.1073/pnas.1800756115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu S, He X, Yang Z et al (2021) Activation pathway of a G protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design. Nat Commun 12:4721. https://doi.org/10.1038/s41467-021-25020-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen J, Liu J, Yuan Y et al (2021) Molecular mechanisms of diverse activation stimulated by different biased agonists for the β2-adrenergic receptor. J Chem Inf Model. https://doi.org/10.1021/acs.jcim.1c01016

    Article  PubMed  PubMed Central  Google Scholar 

  51. Stein A, Kortemme T (2013) Improvements to robotics-inspired conformational sampling in rosetta. PLoS ONE 8:e63090. https://doi.org/10.1371/journal.pone.0063090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  53. Madhavi Sastry G, Adzhigirey M, Day T et al (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27:221–234. https://doi.org/10.1007/s10822-013-9644-8

    Article  CAS  PubMed  Google Scholar 

  54. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: A web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865. https://doi.org/10.1002/jcc.20945

    Article  CAS  PubMed  Google Scholar 

  55. Wu EL, Cheng X, Jo S et al (2014) CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J Comput Chem 35:1997–2004. https://doi.org/10.1002/jcc.23702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee J, Hitzenberger M, Rieger M et al (2020) CHARMM-GUI supports the Amber force fields. J Chem Phys 153:035103. https://doi.org/10.1063/5.0012280

    Article  CAS  PubMed  Google Scholar 

  57. Ghanouni P, Schambye H, Seifert R et al (2000) The Effect of pH on β2 Adrenoceptor Function: EVIDENCE FOR PROTONATION-DEPENDENT ACTIVATION*. J Biol Chem 275:3121–3127. https://doi.org/10.1074/jbc.275.5.3121

    Article  CAS  PubMed  Google Scholar 

  58. Ranganathan A, Dror RO, Carlsson J (2014) Insights into the role of Asp792.50 in β2 adrenergic receptor activation from molecular dynamics simulations. Biochemistry 53:7283–7296. https://doi.org/10.1021/bi5008723

    Article  CAS  PubMed  Google Scholar 

  59. Ballesteros JA, Weinstein H (1995) [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. In: Sealfon SC (ed) Methods in Neurosciences. Academic Press, pp 366–428

    Google Scholar 

  60. Maier JA, Martinez C, Kasavajhala K et al (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713. https://doi.org/10.1021/acs.jctc.5b00255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gould IR, Skjevik AA, Dickson CJ, et al (2018) Lipid17: A Comprehensive AMBER Force Field for the Simulation of Zwitterionic and Anionic Lipids

  62. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  63. Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174. https://doi.org/10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  64. He X, Man VH, Yang W et al (2020) A fast and high-quality charge model for the next generation general AMBER force field. J Chem Phys 153:114502. https://doi.org/10.1063/5.0019056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Case DA, Aktulga HM, Belfon K et al (2021) Amber 2021. University of California, San Francisco

    Google Scholar 

  66. Götz AW, Williamson MJ, Xu D et al (2012) Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born J Chem Theory Comput 8:1542–1555. https://doi.org/10.1021/ct200909j

    Article  CAS  PubMed  Google Scholar 

  67. Salomon-Ferrer R, Götz AW, Poole D et al (2013) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. explicit solvent particle mesh ewald. J Chem Theory Comput 9:3878–3888. https://doi.org/10.1021/ct400314y

    Article  CAS  PubMed  Google Scholar 

  68. Le Grand S, Götz AW, Walker RC (2013) SPFP: Speed without compromise—A mixed precision model for GPU accelerated molecular dynamics simulations. Comput Phys Commun 184:374–380. https://doi.org/10.1016/j.cpc.2012.09.022

    Article  CAS  Google Scholar 

  69. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341. https://doi.org/10.1016/0021-9991(77)90098-5

    Article  CAS  Google Scholar 

  70. Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9:3084–3095. https://doi.org/10.1021/ct400341p

    Article  CAS  PubMed  Google Scholar 

  71. Hunter JD (2007) Matplotlib: A 2D graphics environment. Comput Sci Eng 9:90–95. https://doi.org/10.1109/MCSE.2007.55

    Article  Google Scholar 

  72. Wickham H (2016) In: ggplot2: Elegant Graphics for Data Analysis. Springer International Publishing, Berlin

    Google Scholar 

  73. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  74. Sethi A, Eargle J, Black AA, Luthey-Schulten Z (2009) Dynamical networks in tRNA:protein complexes. PNAS 106:6620–6625. https://doi.org/10.1073/pnas.0810961106

    Article  PubMed  PubMed Central  Google Scholar 

  75. Melo MCR, Bernardi RC, de la Fuente-Nunez C, Luthey-Schulten Z (2020) Generalized correlation-based dynamical network analysis: a new high-performance approach for identifying allosteric communications in molecular dynamics trajectories. J Chem Phys 153:134104. https://doi.org/10.1063/5.0018980

    Article  CAS  PubMed  Google Scholar 

  76. Kraskov A, Stögbauer H, Grassberger P (2004) Estimating mutual information. Phys Rev E 69:066138. https://doi.org/10.1103/PhysRevE.69.066138

    Article  CAS  Google Scholar 

  77. Lange OF, Grubmüller H (2006) Generalized correlation for biomolecular dynamics. Proteins: Structure. Function, and Bioinformatics 62:1053–1061. https://doi.org/10.1002/prot.20784

    Article  CAS  Google Scholar 

  78. Floyd RW (1962) Algorithm 97: Shortest path. Commun ACM 5:345. https://doi.org/10.1145/367766.368168

    Article  Google Scholar 

  79. Warshall S (1962) A theorem on Boolean matrices. J ACM 9:11–12. https://doi.org/10.1145/321105.321107

    Article  Google Scholar 

  80. Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy. J Med Chem 47:1739–1749. https://doi.org/10.1021/jm0306430

    Article  CAS  PubMed  Google Scholar 

  81. Halgren TA, Murphy RB, Friesner RA et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. enrichment factors in database screening. J Med Chem 47:1750–1759. https://doi.org/10.1021/jm030644s

    Article  CAS  PubMed  Google Scholar 

  82. Miller BR, McGee TD, Swails JM et al (2012) MMPBSA.py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8:3314–3321. https://doi.org/10.1021/ct300418h

    Article  CAS  PubMed  Google Scholar 

  83. Xiao L, Diao J, Greene D et al (2017) A continuum poisson-boltzmann model for membrane channel proteins. J Chem Theory Comput 13:3398–3412. https://doi.org/10.1021/acs.jctc.7b00382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nguyen H, Roe D, Swails J, Case D (2016) PYTRAJ: Interactive data analysis for molecular dynamics simulations

  85. Uciechowska U, Schemies J, Scharfe M et al (2012) Binding free energy calculations and biological testing of novel thiobarbiturates as inhibitors of the human NAD+ dependent histone deacetylase Sirt2. Med Chem Commun 3:167–173. https://doi.org/10.1039/C1MD00214G

    Article  CAS  Google Scholar 

  86. Cao R, Huang N, Wang Y (2014) Evaluation and application of MD-PB/SA in structure-based hierarchical virtual screening. J Chem Inf Model 54:1987–1996. https://doi.org/10.1021/ci5003203

    Article  CAS  PubMed  Google Scholar 

  87. Tsantrizos YS, Bolger G, Bonneau P et al (2003) Macrocyclic inhibitors of the NS3 protease as potential therapeutic agents of hepatitis C virus infection. Angew Chem 115:1394–1398. https://doi.org/10.1002/ange.200390319

    Article  Google Scholar 

  88. Ghosh AK, Swanson LM, Cho H et al (2005) Structure-based design: synthesis and biological evaluation of a series of novel cycloamide-Derived HIV-1 protease inhibitors. J Med Chem 48:3576–3585. https://doi.org/10.1021/jm050019i

    Article  CAS  PubMed  Google Scholar 

  89. Loughlin WA, Tyndall JDA, Glenn MP, Fairlie DP (2004) Beta-Strand mimetics. Chem Rev 104:6085–6118. https://doi.org/10.1021/cr040648k

    Article  CAS  PubMed  Google Scholar 

  90. Zhao S, Schaub AJ, Tsai S-C, Luo R (2021) Development of a pantetheine force field library for molecular modeling. J Chem Inf Model 61:856–868. https://doi.org/10.1021/acs.jcim.0c01384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lee Y, Warne T, Nehmé R et al (2020) Molecular basis of β-arrestin coupling to formoterol-bound β 1 -adrenoceptor. Nature 583:862–866. https://doi.org/10.1038/s41586-020-2419-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Seyedabadi M, Gharghabi M, Gurevich EV, Gurevich VV (2022) Structural basis of GPCR coupling to distinct signal transducers: implications for biased signaling. Trends Biochem Sci 47:570–581. https://doi.org/10.1016/j.tibs.2022.03.009

    Article  CAS  PubMed  Google Scholar 

  93. Masureel M, Zou Y, Picard L-P et al (2018) Structural insights into binding specificity, efficacy and bias of a β2AR partial agonist. Nat Chem Biol 14:1059–1066. https://doi.org/10.1038/s41589-018-0145-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wacker D, Wang S, McCorvy JD et al (2017) Crystal structure of an LSD-bound human serotonin receptor. Cell 168:377-389.e12. https://doi.org/10.1016/j.cell.2016.12.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shenoy SK, Drake MT, Nelson CD et al (2006) β-Arrestin-dependent, G Protein-independent ERK1/2 Activation by the β2 Adrenergic Receptor*. J Biol Chem 281:1261–1273. https://doi.org/10.1074/jbc.M506576200

    Article  CAS  PubMed  Google Scholar 

  96. Kelly B, Hollingsworth SA, Blakemore DC et al (2021) Delineating the ligand-receptor interactions that lead to biased signaling at the μ-opioid receptor. J Chem Inf Model 61:3696–3707. https://doi.org/10.1021/acs.jcim.1c00585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhou Q, Yang D, Wu M et al (2019) Common activation mechanism of class A GPCRs. Elife 8:e50279. https://doi.org/10.7554/eLife.50279

    Article  PubMed  PubMed Central  Google Scholar 

  98. Sun X, Laroche G, Wang X et al (2017) Propagation of the allosteric modulation induced by sodium in the δ-opioid receptor. Chem A Eur J 23:4615–4624. https://doi.org/10.1002/chem.201605575

    Article  CAS  Google Scholar 

  99. Zhang F, Chen X, Chen J et al (2021) Probing allosteric regulation mechanism of W7.35 on agonist-induced activity for μOR by mutation simulation. J Chem Inf Model 5:5. https://doi.org/10.1021/acs.jcim.1c00650

    Article  CAS  Google Scholar 

  100. VanWart AT, Eargle J, Luthey-Schulten Z, Amaro RE (2012) Exploring residue component contributions to dynamical network models of allostery. J Chem Theory Comput 8:2949–2961. https://doi.org/10.1021/ct300377a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhao L, He X, Jiang H, Cheng X (2022) Computational characterization of transducer recognition of β2 adrenergic receptor. Biochem Biophys Res Commun 592:67–73. https://doi.org/10.1016/j.bbrc.2022.01.012

    Article  CAS  PubMed  Google Scholar 

  102. Cong X, Maurel D, Déméné H et al (2021) Molecular insights into the biased signaling mechanism of the μ-opioid receptor. Mol Cell 81:4165-4175.e6. https://doi.org/10.1016/j.molcel.2021.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Alican Gulsevin at Vanderbilt University for the helpful suggestions in this project.

Funding

H.L. was supported by a fellowship (Finish-Line Award) from University of Florida.

Author information

Authors and Affiliations

Authors

Contributions

HL designed and performed the study, analyzed the data, and wrote the manuscript. NMU wrote the manuscript. NH designed the study and wrote the manuscript.

Corresponding author

Correspondence to Nicole Horenstein.

Ethics declarations

Competing Interests

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5625 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Urs, N.M. & Horenstein, N. Computational insights into ligand–induced G protein and β-arrestin signaling of the dopamine D1 receptor. J Comput Aided Mol Des 37, 227–244 (2023). https://doi.org/10.1007/s10822-023-00503-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-023-00503-7

Keywords

Navigation