1932

Abstract

Striosomes form neurochemically specialized compartments of the striatum embedded in a large matrix made up of modules called matrisomes. Striosome-matrix architecture is multiplexed with the canonical direct-indirect organization of the striatum. Striosomal functions remain to be fully clarified, but key information is emerging. First, striosomes powerfully innervate nigral dopamine-containing neurons and can completely shut down their activity, with a following rebound excitation. Second, striosomes receive limbic and cognition-related corticostriatal afferents and are dynamically modulated in relation to value-based actions. Third, striosomes are spatially interspersed among matrisomes and interneurons and are influenced by local and global neuromodulatory and oscillatory activities. Fourth, striosomes tune engagement and the motivation to perform reinforcement learning, to manifest stereotypical behaviors, and to navigate valence conflicts and valence discriminations. We suggest that, at an algorithmic level, striosomes could serve as distributed scaffolds to provide formats of the striatal computations generated through development and refined through learning. We propose that striosomes affect subjective states. By transforming corticothalamic and other inputs to the functional formats of the striatum, they could implement state transitions in nigro-striato-nigral circuits to affect bodily and cognitive actions according to internal motives whose functions are compromised in neuropsychiatric conditions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-121522-025740
2023-07-10
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/neuro/46/1/annurev-neuro-121522-025740.html?itemId=/content/journals/10.1146/annurev-neuro-121522-025740&mimeType=html&fmt=ahah

Literature Cited

  1. Alexander L, Jelen LA, Mehta MA, Young AH. 2021. The anterior cingulate cortex as a key locus of ketamine's antidepressant action. Neurosci. Biobehav. Rev. 127:531–54
    [Google Scholar]
  2. Amemori K-I, Amemori S, Gibson DJ, Graybiel AM. 2018. Striatal microstimulation induces persistent and repetitive negative decision-making predicted by striatal beta-band oscillation. Neuron 99:4829–41.e6
    [Google Scholar]
  3. Amemori K-I, Gibb LG, Graybiel AM. 2011. Shifting responsibly: the importance of striatal modularity to reinforcement learning in uncertain environments. Front. Hum. Neurosci. 5:47
    [Google Scholar]
  4. Amemori K-I, Graybiel AM. 2012. Localized microstimulation of primate pregenual cingulate cortex induces negative decision-making. Nat. Neurosci. 15:5776–85
    [Google Scholar]
  5. Amemori S, Graybiel AM, Amemori K-I. 2021. Causal evidence for induction of pessimistic decision-making in primates by the network of frontal cortex and striosomes. Front. Neurosci. 15:649167
    [Google Scholar]
  6. Araque A, Parpura V, Sanzgiri RP, Haydon PG. 1999. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22:5208–15
    [Google Scholar]
  7. Arber S, Costa RM. 2022. Networking brainstem and basal ganglia circuits for movement. Nat. Rev. Neurosci. 23:6342–60
    [Google Scholar]
  8. Aupperle RL, Melrose AJ, Francisco A, Paulus MP, Stein MB. 2015. Neural substrates of approach-avoidance conflict decision-making. Hum. Brain Mapp. 36:2449–62
    [Google Scholar]
  9. Avshalumov MV, Patel JC, Rice ME. 2008. AMPA receptor-dependent H2O2 generation in striatal medium spiny neurons but not dopamine axons: one source of a retrograde signal that can inhibit dopamine release. J. Neurophysiol. 100:31590–601
    [Google Scholar]
  10. Banghart MR, Neufeld SQ, Wong NC, Sabatini BL. 2015. Enkephalin disinhibits mu opioid receptor-rich striatal patches via delta opioid receptors. Neuron 88:61227–39
    [Google Scholar]
  11. Bennett BD, Callaway JC, Wilson CJ. 2000. Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons. J. Neurosci. 20:228493–503
    [Google Scholar]
  12. Bloem B, Huda R, Amemori K-I, Abate AS, Krishna G et al. 2022. Multiplexed action-outcome representation by striatal striosome-matrix compartments detected with a mouse cost-benefit foraging task. Nat. Commun. 13:11541
    [Google Scholar]
  13. Bloem B, Huda R, Sur M, Graybiel AM. 2017. Two-photon imaging in mice shows striosomes and matrix have overlapping but differential reinforcement-related responses. eLife 6:e32353
    [Google Scholar]
  14. Brimblecombe KR, Cragg SJ. 2017. The striosome and matrix compartments of the striatum: a path through the labyrinth from neurochemistry toward function. ACS Chem. Neurosci. 8:2235–42
    [Google Scholar]
  15. Brittain J-S, Brown P. 2014. Oscillations and the basal ganglia: motor control and beyond. Neuroimage 85:2637–47
    [Google Scholar]
  16. Bromberg-Martin ES, Matsumoto M, Hikosaka O. 2010. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68:5815–34
    [Google Scholar]
  17. Canales JJ, Graybiel AM. 2000. A measure of striatal function predicts motor stereotypy. Nat. Neurosci. 3:4377–83
    [Google Scholar]
  18. Chai H, Diaz-Castro B, Shigetomi E, Monte E, Octeau JC et al. 2017. Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological, and functional evidence. Neuron 95:3531–49.e9
    [Google Scholar]
  19. Chen BT, Rice ME. 2001. Novel Ca2+ dependence and time course of somatodendritic dopamine release: substantia nigra versus striatum. J. Neurosci. 21:197841–47
    [Google Scholar]
  20. Chen BT, Rice ME. 2002. Synaptic regulation of somatodendritic dopamine release by glutamate and GABA differs between substantia nigra and ventral tegmental area. J. Neurochem. 81:1158–69
    [Google Scholar]
  21. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X 2015. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348:6233aaa6090
    [Google Scholar]
  22. Cirnaru M-D, Song S, Tshilenge K-T, Corwin C, Mleczko J et al. 2021. Unbiased identification of novel transcription factors in striatal compartmentation and striosome maturation. eLife 10:e65979
    [Google Scholar]
  23. Courtemanche R, Fujii N, Graybiel AM. 2003. Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. J. Neurosci. 23:3711741–52
    [Google Scholar]
  24. Cragg S, Rice ME, Greenfield SA. 1997. Heterogeneity of electrically evoked dopamine release and reuptake in substantia nigra, ventral tegmental area, and striatum. J. Neurophysiol. 77:2863–73
    [Google Scholar]
  25. Crittenden JR, Graybiel AM. 2011. Basal ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front. Neuroanat. 5:59
    [Google Scholar]
  26. Crittenden JR, Graybiel AM 2016. Disease-associated changes in the striosome and matrix compartments of the dorsal striatum. Handbook of Basal Ganglia Structure and Function H Steiner, KY Tseng 801–21. Amsterdam: Elsevier
    [Google Scholar]
  27. Crittenden JR, Lacey CJ, Weng F-J, Garrison CE, Gibson DJ et al. 2017. Striatal cholinergic interneurons modulate spike-timing in striosomes and matrix by an amphetamine-sensitive mechanism. Front. Neuroanat. 11:20
    [Google Scholar]
  28. Crittenden JR, Tillberg PW, Riad MH, Shima Y, Gerfen CR et al. 2016. Striosome-dendron bouquets highlight a unique striatonigral circuit targeting dopamine-containing neurons. PNAS 113:4011318–23
    [Google Scholar]
  29. Cui G, Jun SB, Jin X, Pham MD, Vogel SS et al. 2013. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494:7436238–42
    [Google Scholar]
  30. Dahlstroem A, Fuxe K. 1964. A method for the demonstration of monoamine-containing nerve fibres in the central nervous system. Acta Physiol. Scand. 60:293–94
    [Google Scholar]
  31. Damier P, Hirsch EC, Agid Y, Graybiel AM. 1999a. The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D28K immunohistochemistry. Brain 122:81421–36
    [Google Scholar]
  32. Damier P, Hirsch EC, Agid Y, Graybiel AM. 1999b. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. Brain 122:81437–48
    [Google Scholar]
  33. Djurfeldt M, Ekeberg Ö, Graybiel AM 2001. Cortex–basal ganglia interaction and attractor states. Neurocomputing 38–40:573–79
    [Google Scholar]
  34. Doya K. 2000. Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr. Opin. Neurobiol. 10:6732–39
    [Google Scholar]
  35. Eblen F, Graybiel AM. 1995. Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey. J. Neurosci. 15:95999–6013
    [Google Scholar]
  36. Evans RC, Twedell EL, Zhu M, Ascencio J, Zhang R et al. 2020. Functional dissection of basal ganglia inhibitory inputs onto substantia nigra dopaminergic neurons. Cell Rep. 32:11108156
    [Google Scholar]
  37. Evarts EV. 1965. Relation of discharge frequency to conduction velocity in pyramidal tract neurons. J. Neurophysiol. 28:216–28
    [Google Scholar]
  38. Faull RL, Dragunow M, Villiger JW. 1989. The distribution of neurotensin receptors and acetylcholinesterase in the human caudate nucleus: evidence for the existence of a third neurochemical compartment. Brain Res. 488:1–2381–86
    [Google Scholar]
  39. Flaherty AW, Graybiel AM. 1991. Corticostriatal transformations in the primate somatosensory system. Projections from physiologically mapped body-part representations. J. Neurophysiol. 66:41249–63
    [Google Scholar]
  40. Flaherty AW, Graybiel AM. 1993a. Output architecture of the primate putamen. J. Neurosci. 13:83222–37
    [Google Scholar]
  41. Flaherty AW, Graybiel AM. 1993b. Two input systems for body representations in the primate striatal matrix: experimental evidence in the squirrel monkey. J. Neurosci. 13:31120–37
    [Google Scholar]
  42. Flaherty AW, Graybiel AM. 1994. Input-output organization of the sensorimotor striatum in the squirrel monkey. J. Neurosci. 14:2599–610
    [Google Scholar]
  43. Foster NN, Barry J, Korobkova L, Garcia L, Gao L et al. 2021. The mouse cortico-basal ganglia-thalamic network. Nature 598:7879188–94
    [Google Scholar]
  44. Friedman A, Homma D, Bloem B, Gibb LG, Amemori K-I et al. 2017. Chronic stress alters striosome-circuit dynamics, leading to aberrant decision-making. Cell 171:51191–205.e28
    [Google Scholar]
  45. Friedman A, Homma D, Gibb LG, Amemori K-I, Rubin SJ et al. 2015. A corticostriatal path targeting striosomes controls decision-making under conflict. Cell 161:61320–33
    [Google Scholar]
  46. Friedman A, Hueske E, Drammis SM, Toro Arana SE, Nelson ED et al. 2020. Striosomes mediate value-based learning vulnerable in age and a Huntington's disease model. Cell 183:4918–34.e49
    [Google Scholar]
  47. Fujiyama F, Sohn J, Nakano T, Furuta T, Nakamura KC et al. 2011. Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron-tracing study using a viral vector. Eur. J. Neurosci. 33:4668–77
    [Google Scholar]
  48. Georgopoulos AP, Kalaska JF, Massey JT. 1981. Spatial trajectories and reaction times of aimed movements: effects of practice, uncertainty, and change in target location. J. Neurophysiol. 46:4725–43
    [Google Scholar]
  49. Gerfen CR. 1985. The neostriatal mosaic. I. Compartmental organization of projections from the striatum to the substantia nigra in the rat. J. Comp. Neurol. 236:4454–76
    [Google Scholar]
  50. Gittis AH, Kreitzer AC. 2012. Striatal microcircuitry and movement disorders. Trends Neurosci. 35:9557–64
    [Google Scholar]
  51. Glowinski J, Chéramy A, Romo R, Barbeito L. 1988. Presynaptic regulation of dopaminergic transmission in the striatum. Cell. Mol. Neurobiol. 8:17–17
    [Google Scholar]
  52. Gokce O, Stanley GM, Treutlein B, Neff NF, Camp JG et al. 2016. Cellular taxonomy of the mouse striatum as revealed by single-cell RNA-seq. Cell Rep. 16:41126–37
    [Google Scholar]
  53. Grace AA, Bunney BS. 1979. Paradoxical GABA excitation of nigral dopaminergic cells: indirect mediation through reticulata inhibitory neurons. Eur. J. Pharmacol. 59:3–4211–18
    [Google Scholar]
  54. Graybiel AM. 1984. Correspondence between the dopamine islands and striosomes of the mammalian striatum. Neuroscience 13:41157–87
    [Google Scholar]
  55. Graybiel AM. 1997. The basal ganglia and cognitive pattern generators. Schizophr. Bull. 23:3459–69
    [Google Scholar]
  56. Graybiel AM. 1998. The basal ganglia and chunking of action repertoires. Neurobiol. Learn. Mem. 70:1–2119–36
    [Google Scholar]
  57. Graybiel AM, Aosaki T, Flaherty AW, Kimura M. 1994. The basal ganglia and adaptive motor control. Science 265:51801826–31
    [Google Scholar]
  58. Graybiel AM, Baughman RW, Eckenstein F. 1986. Cholinergic neuropil of the striatum observes striosomal boundaries. Nature 323:6089625–27
    [Google Scholar]
  59. Graybiel AM, Flaherty AW, Giménez-Amaya J-M 1991. Striosomes and matrisomes. The Basal Ganglia III G Bernardi, MB Carpenter, G Di Chiara, M Morelli, P Stanzione 3–12. New York: Plenum
    [Google Scholar]
  60. Graybiel AM, Hickey TL. 1982. Chemospecificity of ontogenetic units in the striatum: demonstration by combining [3H]thymidine neuronography and histochemical staining. PNAS 79:1198–202
    [Google Scholar]
  61. Graybiel AM, Ragsdale CW Jr. 1978. Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. PNAS 75:115723–26
    [Google Scholar]
  62. Graybiel AM, Ragsdale CW Jr. 1980. Clumping of acetylcholinesterase activity in the developing striatum of the human fetus and young infant. PNAS 77:21214–18
    [Google Scholar]
  63. Graybiel AM, Ragsdale CW Jr, Yoneoka ES, Elde RP. 1981. An immunohistochemical study of enkephalins and other neuropeptides in the striatum of the cat with evidence that the opiate peptides are arranged to form mosaic patterns in register with the striosomal compartments visible by acetylcholinesterase staining. Neuroscience 6:3377–97
    [Google Scholar]
  64. Hamid AA, Frank MJ, Moore CI. 2021. Wave-like dopamine dynamics as a mechanism for spatiotemporal credit assignment. Cell 184:102733–49.e16
    [Google Scholar]
  65. He J, Kleyman M, Chen J, Alikaya A, Rothenhoefer KM et al. 2021. Transcriptional and anatomical diversity of medium spiny neurons in the primate striatum. Curr. Biol. 31:245473–86.e6
    [Google Scholar]
  66. Hikosaka O. 2010. The habenula: from stress evasion to value-based decision-making. Nat. Rev. Neurosci. 11:7503–13
    [Google Scholar]
  67. Hoebel BG, Avena NM, Rada P. 2007. Accumbens dopamine-acetylcholine balance in approach and avoidance. Curr. Opin. Pharmacol. 7:6617–27
    [Google Scholar]
  68. Hong S, Amemori S, Chung E, Gibson DJ, Amemori K-I et al. 2019. Predominant striatal input to the lateral habenula in macaques comes from striosomes. Curr. Biol. 29:151–61.e5
    [Google Scholar]
  69. Hong S, Jhou TC, Smith M, Saleem KS, Hikosaka O. 2011. Negative reward signals from the lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates. J. Neurosci. 31:3211457–71
    [Google Scholar]
  70. Inase M, Sakai ST, Tanji J. 1996. Overlapping corticostriatal projections from the supplementary motor area and the primary motor cortex in the macaque monkey: an anterograde double labeling study. J. Comp. Neurol. 373:2283–96
    [Google Scholar]
  71. Ironside M, Amemori K-I, McGrath CL, Pedersen ML, Kang MS et al. 2020. Approach-avoidance conflict in major depressive disorder: congruent neural findings in humans and nonhuman primates. Biol. Psychiatry 87:5399–408
    [Google Scholar]
  72. Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE. 1991. Adaptive mixtures of local experts. Neural Comput. 3:179–87
    [Google Scholar]
  73. Jeong H, Taylor A, Floeder JR, Lohmann M, Mihalas S et al. 2022. Mesolimbic dopamine release conveys causal associations. Science 378:6626eabq6740
    [Google Scholar]
  74. Jiménez-Castellanos J, Graybiel AM 1989. Compartmental origins of striatal efferent projections in the cat. Neuroscience 32:2297–321
    [Google Scholar]
  75. Kamath T, Abdulraouf A, Burris SJ, Langlieb J, Gazestani V et al. 2022. Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson's disease. Nat. Neurosci. 25:5588–95
    [Google Scholar]
  76. Kelly SM, Raudales R, He M, Lee JH, Kim Y et al. 2018. Radial glial lineage progression and differential intermediate progenitor amplification underlie striatal compartments and circuit organization. Neuron 99:2345–61.e4
    [Google Scholar]
  77. Kincaid AE, Zheng T, Wilson CJ. 1998. Connectivity and convergence of single corticostriatal axons. J. Neurosci. 18:124722–31
    [Google Scholar]
  78. Korn CW, Vunder J, Miró J, Fuentemilla L, Hurlemann R et al. 2017. Amygdala lesions reduce anxiety-like behavior in a human benzodiazepine-sensitive approach-avoidance conflict test. Biol. Psychiatry 82:7522–31
    [Google Scholar]
  79. Kostović I, Džaja D, Raguž M, Kopić J, Blažević A et al. 2022. Transient compartmentalization and accelerated volume growth coincide with the expected development of cortical afferents in the human neostriatum. Cereb. Cortex 33:2434–57
    [Google Scholar]
  80. Krok AC, Mistry P, Li Y, Tritsch NX. 2022. Intrinsic reward-like dopamine and acetylcholine dynamics in striatum. bioRxiv 2022.09.09.507300. https://doi.org/10.1101/2022.09.09.507300
  81. Lee H, Fenster RJ, Pineda SS, Gibbs WS, Mohammadi S et al. 2020. Cell type-specific transcriptomics reveals that mutant huntingtin leads to mitochondrial RNA release and neuronal innate immune activation. Neuron 107:5891–908.e8
    [Google Scholar]
  82. Lerner TN, Shilyansky C, Davidson TJ, Evans KE, Beier KT et al. 2015. Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell 162:3635–47
    [Google Scholar]
  83. Li Y, Simmler LD, Van Zessen R, Flakowski J, Wan J-X et al. 2021. Synaptic mechanism underlying serotonin modulation of transition to cocaine addiction. Science 373:65601252–56
    [Google Scholar]
  84. Liu C, Cai X, Ritzau-Jost A, Kramer PF, Li Y et al. 2022. An action potential initiation mechanism in distal axons for the control of dopamine release. Science 375:65871378–85
    [Google Scholar]
  85. Liu C, Goel P, Kaeser PS. 2021. Spatial and temporal scales of dopamine transmission. Nat. Rev. Neurosci. 22:6345–58
    [Google Scholar]
  86. López-Giménez JF, Mengod G, Palacios JM, Vilaró MT. 1997. Selective visualization of rat brain 5-HT2A receptors by autoradiography with [3H]MDL 100,907. Naunyn Schmiedebergs Arch. Pharmacol. 356:4446–54
    [Google Scholar]
  87. Maltese M, March JR, Bashaw AG, Tritsch NX. 2021. Dopamine differentially modulates the size of projection neuron ensembles in the intact and dopamine-depleted striatum. eLife 10:e68041
    [Google Scholar]
  88. Marr D. 1976. Analyzing natural images: a computational theory of texture vision. Cold Spring Harb. Symp. Quant. Biol. 40:647–62
    [Google Scholar]
  89. Märtin A, Calvigioni D, Tzortzi O, Fuzik J, Wärnberg E et al. 2019. A spatiomolecular map of the striatum. Cell Rep. 29:134320–33.e5
    [Google Scholar]
  90. Matsushima A, Graybiel AM. 2020. Combinatorial developmental controls on striatonigral circuits. Cell Rep. 31:11107778
    [Google Scholar]
  91. Matsushima A, Pineda SS, Crittenden JR, Lee H, Galani K et al. 2023. Transcriptional vulnerabilities of striatal neurons in human and rodent models of Huntington's disease. Nat. Commun 141282
  92. McGregor MM, McKinsey GL, Girasole AE, Bair-Marshall CJ, Rubenstein JLR et al. 2019. Functionally distinct connectivity of developmentally targeted striosome neurons. Cell Rep. 29:61419–28.e5
    [Google Scholar]
  93. Mink JW, Thach WT. 1993. Basal ganglia intrinsic circuits and their role in behavior. Curr. Opin. Neurobiol. 3:6950–57
    [Google Scholar]
  94. Miyamoto Y, Katayama S, Shigematsu N, Nishi A, Fukuda T. 2018. Striosome-based map of the mouse striatum that is conformable to both cortical afferent topography and uneven distributions of dopamine D1 and D2 receptor-expressing cells. Brain Struct. Funct. 223:94275–91
    [Google Scholar]
  95. Morigaki R, Lee JH, Yoshida T, Wüthrich C, Hu D et al. 2020. Spatiotemporal up-regulation of mu opioid receptor 1 in striatum of mouse model of Huntington's disease differentially affecting caudal and striosomal regions. Front. Neuroanat. 14:608060
    [Google Scholar]
  96. Nadel JA, Pawelko SS, Scott JR, McLaughlin R, Fox M et al. 2021. Optogenetic stimulation of striatal patches modifies habit formation and inhibits dopamine release. Sci. Rep. 11:119847
    [Google Scholar]
  97. Newman H, Liu F-C, Graybiel AM. 2015. Dynamic ordering of early generated striatal cells destined to form the striosomal compartment of the striatum. J. Comp. Neurol. 523:6943–62
    [Google Scholar]
  98. Nisenbaum LK, Webster SM, Chang SL, McQueeney KD, LoTurco JJ. 1998. Early patterning of prelimbic cortical axons to the striatal patch compartment in the neonatal mouse. Dev. Neurosci. 20:2–3113–24
    [Google Scholar]
  99. Parker JG, Marshall JD, Ahanonu B, Wu Y-W, Kim TH et al. 2018. Diametric neural ensemble dynamics in parkinsonian and dyskinetic states. Nature 557:7704177–82
    [Google Scholar]
  100. Patriarchi T, Cho JR, Merten K, Howe MW, Marley A et al. 2018. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360:6396eaat4422
    [Google Scholar]
  101. Pert CB, Kuhar MJ, Snyder SH. 1976. Opiate receptor: autoradiographic localization in rat brain. PNAS 73:103729–33
    [Google Scholar]
  102. Poulin J-F, Caronia G, Hofer C, Cui Q, Helm B et al. 2018. Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. Nat. Neurosci. 21:1260–71
    [Google Scholar]
  103. Poulin J-F, Gaertner Z, Moreno-Ramos OA, Awatramani R 2020. Classification of midbrain dopamine neurons using single-cell gene expression profiling approaches. Trends Neurosci. 43:155–69
    [Google Scholar]
  104. Poulin J-F, Zou J, Drouin-Ouellet J, Kim K-YA, Cicchetti F et al. 2014. Defining midbrain dopaminergic neuron diversity by single-cell gene expression profiling. Cell Rep. 9:3930–43
    [Google Scholar]
  105. Prager EM, Dorman DB, Hobel ZB, Malgady JM, Blackwell KT et al. 2020. Dopamine oppositely modulates state transitions in striosome and matrix direct pathway striatal spiny neurons. Neuron 108:61091–102.e5
    [Google Scholar]
  106. Quik M, Cox H, Parameswaran N, O'Leary K, Langston JW et al. 2007. Nicotine reduces levodopa-induced dyskinesias in lesioned monkeys. Ann. Neurol. 62:6588–96
    [Google Scholar]
  107. Ragsdale CW Jr., Graybiel AM. 1988. Fibers from the basolateral nucleus of the amygdala selectively innervate striosomes in the caudate nucleus of the cat. J. Comp. Neurol. 269:4506–22
    [Google Scholar]
  108. Ragsdale CW Jr., Graybiel AM. 1991. Compartmental organization of the thalamostriatal connection in the cat. J. Comp. Neurol. 311:1134–67
    [Google Scholar]
  109. Rajakumar N, Elisevich K, Flumerfelt BA. 1993. Compartmental origin of the striato-entopeduncular projection in the rat. J. Comp. Neurol. 331:2286–96
    [Google Scholar]
  110. Rice ME, Cragg SJ, Greenfield SA. 1997. Characteristics of electrically evoked somatodendritic dopamine release in substantia nigra and ventral tegmental area in vitro. J. Neurophysiol. 77:2853–62
    [Google Scholar]
  111. Rizzi G, Tan KR. 2019. Synergistic nigral output pathways shape movement. Cell Rep. 27:72184–98.e4
    [Google Scholar]
  112. Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E et al. 2019. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363:64341463–67
    [Google Scholar]
  113. Saka E, Goodrich C, Harlan P, Madras BK, Graybiel AM. 2004. Repetitive behaviors in monkeys are linked to specific striatal activation patterns. J. Neurosci. 24:347557–65
    [Google Scholar]
  114. Salinas AG, Davis MI, Lovinger DM, Mateo Y 2016. Dopamine dynamics and cocaine sensitivity differ between striosome and matrix compartments of the striatum. Neuropharmacology 108:275–83
    [Google Scholar]
  115. Schultz W, Dayan P, Montague PR. 1997. A neural substrate of prediction and reward. Science 275:53061593–99
    [Google Scholar]
  116. Sgobio C, Wu J, Zheng W, Chen X, Pan J et al. 2017. Aldehyde dehydrogenase 1-positive nigrostriatal dopaminergic fibers exhibit distinct projection pattern and dopamine release dynamics at mouse dorsal striatum. Sci. Rep. 7:15283
    [Google Scholar]
  117. Simantov R, Kuhar MJ, Uhl GR, Snyder SH. 1977. Opioid peptide enkephalin: immunohistochemical mapping in rat central nervous system. PNAS 74:52167–71
    [Google Scholar]
  118. Smith JB, Klug JR, Ross DL, Howard CD, Hollon NG et al. 2016. Genetic-based dissection unveils the inputs and outputs of striatal patch and matrix compartments. Neuron 91:51069–84
    [Google Scholar]
  119. Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF et al. 2016. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353:629478–82
    [Google Scholar]
  120. Stephenson-Jones M, Yu K, Ahrens S, Tucciarone JM, van Huijstee AN et al. 2016. A basal ganglia circuit for evaluating action outcomes. Nature 539:7628289–93
    [Google Scholar]
  121. Stepien AE, Tripodi M, Arber S. 2010. Monosynaptic rabies virus reveals premotor network organization and synaptic specificity of cholinergic partition cells. Neuron 68:3456–72
    [Google Scholar]
  122. Stern EA, Jaeger D, Wilson CJ. 1998. Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo. Nature 394:6692475–78
    [Google Scholar]
  123. Straub C, Tritsch NX, Hagan NA, Gu C, Sabatini BL. 2014. Multiphasic modulation of cholinergic interneurons by nigrostriatal afferents. J. Neurosci. 34:258557–69
    [Google Scholar]
  124. Strausfeld NJ, Hirth F. 2013. Deep homology of arthropod central complex and vertebrate basal ganglia. Science 340:6129157–61
    [Google Scholar]
  125. Sun F, Zeng J, Jing M, Zhou J, Feng J et al. 2018. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174:2481–96.e19
    [Google Scholar]
  126. Suryanarayana SM, Robertson B, Grillner S. 2022. The neural bases of vertebrate motor behaviour through the lens of evolution. Philos. Trans. R. Soc. B 377:184420200521
    [Google Scholar]
  127. Tepper JM, Lee CR. 2007. GABAergic control of substantia nigra dopaminergic neurons. Prog. Brain Res. 160:189–208
    [Google Scholar]
  128. Tepper JM, Martin LP, Anderson DR. 1995. GABAA receptor-mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons. J. Neurosci. 15:43092–103
    [Google Scholar]
  129. Threlfell S, Cragg SJ. 2011. Dopamine signaling in dorsal versus ventral striatum: the dynamic role of cholinergic interneurons. Front. Syst. Neurosci. 5:11
    [Google Scholar]
  130. Threlfell S, Lalic T, Platt NJ, Jennings KA, Deisseroth K et al. 2012. Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 75:158–64
    [Google Scholar]
  131. Tippett LJ, Waldvogel HJ, Thomas SJ, Hogg VM, van Roon-Mom W et al. 2007. Striosomes and mood dysfunction in Huntington's disease. Brain 130:1206–21
    [Google Scholar]
  132. Walker RH, Arbuthnott GW, Baughman RW, Graybiel AM. 1993. Dendritic domains of medium spiny neurons in the primate striatum: relationships to striosomal borders. J. Comp. Neurol. 337:4614–28
    [Google Scholar]
  133. Wang W, Xie X, Zhuang X, Huang Y, Tan T et al. 2023. Striatal μ-opioid receptor activation triggers direct-pathway GABAergic plasticity and induces negative affect. Cell Rep. 42:112089
    [Google Scholar]
  134. Watabe-Uchida M, Uchida N. 2018. Multiple dopamine systems: weal and woe of dopamine. Cold Spring Harb. Symp. Quant. Biol. 83:83–95
    [Google Scholar]
  135. Weglage M, Wärnberg E, Lazaridis I, Calvigioni D, Tzortzi O et al. 2021. Complete representation of action space and value in all dorsal striatal pathways. Cell Rep. 36:4109437
    [Google Scholar]
  136. Windels F, Kiyatkin EA. 2006. Dopamine action in the substantia nigra pars reticulata: iontophoretic studies in awake, unrestrained rats. Eur. J. Neurosci. 24:51385–94
    [Google Scholar]
  137. Yang Y, Cui Y, Sang K, Dong Y, Ni Z et al. 2018. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 554:7692317–22
    [Google Scholar]
  138. Yoshizawa T, Ito M, Doya K. 2018. Reward-predictive neural activities in striatal striosome compartments. eNeuro 5:1ENEURO.0367–17.2018
    [Google Scholar]
  139. Yttri EA, Dudman JT. 2016. Opponent and bidirectional control of movement velocity in the basal ganglia. Nature 533:7603402–6
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-121522-025740
Loading
/content/journals/10.1146/annurev-neuro-121522-025740
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error