Skip to main content
Log in

Research Progress on Structural Characteristics, Structure-Application Relationships, and Environmental Application of Biochar-Supported Zero Valent Iron (ZVI-BC)

  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The biochar-supported zero valent iron (ZVI-BC) can effectively prevent oxidation and agglomeration of ZVI, and improve the utilization rate of ZVI. Recent reviews of ZVI-BC mainly focus on the preparation methods, characterization techniques, and reaction mechanism with pollutants. Since the structural characteristics of biochar have a great impact on Fe0 loading, a comprehensive review of the structural characteristics of biochar is needed to explain its influence on ZVI formation during preparation. And in application of ZVI-BC, the environmental effects on organisms need to be considered. This review of recent research results provides a perspective for understanding the structural characteristics, preparation factors, and ecotoxicity of ZVI-BC.

Recent Findings

The adsorption capacity of ZVI-BC prepared by conventional methods still needs to be improved. The surface-area-normalized reaction rate constant (kSA) of ZVI-BC can be increased to about 180 times by surface modification, adding a stabilizer, element doping, and other modification methods. Recent research on ecotoxicity has shown mostly positive effects of ZVI-BC on microorganisms, animals, and plants during environmental remediation.

Summary

This work reviews the effect of biochar as a support matrix on Fe0 production. The pollutant removal performance is summarized considering the elemental composition, phase components, and surface chemical properties. Also, we discuss the effect of ZVI-BC preparation on contaminant removal and propose methods to optimize the performance of ZVI-BC. The kSA was used to conduct a meta-analysis of kinetic data to illustrate the properties of ZVI-BC. In addition, we evaluate the ecotoxicity of using ZVI-BC in environmental remediation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Li S, Wang W, Yan W, Zhang W. Nanoscale zero-valent iron (nZVI) for the treatment of concentrated Cu(II) wastewater: a field demonstration. Environ Sci Proc Imp. 2014;16(3):524–33. https://doi.org/10.1039/c3em00578j.

    Article  CAS  Google Scholar 

  2. Zafar AM, Javed MA, Hassan AA, Mohamed MM. Groundwater remediation using zero-valent iron nanoparticles (nZVI). Groundw Sustain Dev. 2021;15. https://doi.org/10.1016/j.gsd.2021.100694.

  3. Zhou W, Liu F, Yi S, Chen Y, Geng X, Zheng C. Simultaneous stabilization of Pb and improvement of soil strength using nZVI. Sci Total Environ. 2019;651:877–84. https://doi.org/10.1016/j.scitotenv.2018.09.146.

    Article  CAS  Google Scholar 

  4. Mukherjee R, Kumar R, Sinha A, Lama Y, Saha AK. A review on synthesis, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation. Crit Rev Environ Sci Technol. 2016;46(5):443–66. https://doi.org/10.1080/10643389.2015.1103832.

    Article  CAS  Google Scholar 

  5. Wei Y, Wu S, Yang S, Che C, Lien H, Huang D. Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane. J Hazard Mater. 2012;211:373–80. https://doi.org/10.1016/j.jhazmat.2011.11.018.

    Article  CAS  Google Scholar 

  6. Zhu F, Li L, Ma S, Shang Z. Effect factors, kinetics and thermodynamics of remediation in the chromium contaminated soils by nanoscale zero valent Fe/Cu bimetallic particles. Chem Eng J. 2016;302:663–9. https://doi.org/10.1016/j.cej.2016.05.072.

    Article  CAS  Google Scholar 

  7. Yuan Y, Wei X, Yin H, Zhu M, Luo H, Dang Z. Synergistic removal of Cr(VI) by S-nZVI and organic acids: the enhanced electron selectivity and pH-dependent promotion mechanisms. J Hazard Mater. 2022;423. https://doi.org/10.1016/j.jhazmat.2021.127240.

  8. Zhou Y, Gao B, Zimmerman AR, Chen H, Zhang M, Cao X. Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Biores Technol. 2014;152:538–42. https://doi.org/10.1016/j.biortech.2013.11.021.

    Article  CAS  Google Scholar 

  9. Dong H, Zhang C, Hou K, Cheng Y, Deng J, Jiang Z, Tang L, Zeng G. Removal of trichloroethylene by biochar supported nanoscale zero-valent iron in aqueous solution. Sep Purif Technol. 2017;188:188–96. https://doi.org/10.1016/j.seppur.2017.07.033.

    Article  CAS  Google Scholar 

  10. Bezerra J, Turnhout E, Vasquez IM, Rittl TF, Arts B, Kuyper TW. The promises of the amazonian soil: shifts in discourses of terra preta and biochar. J Environ Pol Plan. 2019;21(5):623–35. https://doi.org/10.1080/1523908x.2016.1269644.

    Article  Google Scholar 

  11. Oni BA, Oziegbe O, Olawole OO. Significance of biochar application to the environment and economy. Annals of Agricultural Sciences. 2019;64(2):222–36. https://doi.org/10.1016/j.aoas.2019.12.006.

    Article  Google Scholar 

  12. Lyu H, Tang J, Cui M, Gao B, Shen B. Biochar/iron (BC/Fe) composites for soil and groundwater remediation: synthesis, applications, and mechanisms. Chemosphere. 2020;246. https://doi.org/10.1016/j.chemosphere.2019.125609.

  13. Li X, Qin Y, Jia Y, Li Y, Zhao Y, Pan Y, Sun J. Preparation and application of Fe/biochar (Fe-BC) catalysts in wastewater treatment: a review. Chemosphere. 2021;274. https://doi.org/10.1016/j.chemosphere.2021.129766.

  14. Wang S, Zhao M, Zhou M, Li YC, Wang J, Gao B, Sato S, Feng K, Yin W, Igalavithana AD, Oleszczuk P, Wang X, Ok YS. Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: a critical review. J Hazard Mater. 2019;373:820–34. https://doi.org/10.1016/j.jhazmat.2019.03.080.

    Article  CAS  Google Scholar 

  15. Xiao X, Chen B, Chen Z, Zhu L, Schnoor JL. Insight into multiple and multilevel structures of biochars and their potential environmental applications: a critical review. Environ Sci Technol. 2018;52(9):5027–47. https://doi.org/10.1021/acs.est.7b06487.

    Article  CAS  Google Scholar 

  16. • Xiao X, Chen B. A direct observation of the fine aromatic clusters and molecular structures of biochars. Environ Sci Technol. 2017;51(10):5473–82. https://doi.org/10.1021/acs.est.6b06300. This article spotlighted the key roles of carbon structures in the regulation of Fe species in the biochar composites by distinct depth distributions of As and Fe.

  17. Xu Z, Wan Z, Sun Y, Cao X, Hou D, Alessi DS, Ok YS, Tsang DCW. Unraveling iron speciation on Fe-biochar with distinct arsenic removal mechanisms and depth distributions of as and Fe. Chem Eng J. 2021;425. https://doi.org/10.1016/j.cej.2021.131489.

  18. Leng L, Huang H, Li H, Li J, Zhou W. Biochar stability assessment methods: a review. Sci Total Environ. 2019;647:210–22. https://doi.org/10.1016/j.scitotenv.2018.07.402.

    Article  CAS  Google Scholar 

  19. Sierra I, Iriarte Velasco U, Ayastuy JL, Aguayo AT. Production of magnetic sewage sludge biochar: investigation of the activation mechanism and effect of the activating agent and temperature. Biomass Convers Bior. 2022. https://doi.org/10.1007/s13399-022-02372-w.

    Article  Google Scholar 

  20. Wani I, Sharma A, Kushvaha V, Madhushri P, Peng L. Effect of pH, volatile content, and pyrolysis conditions on surface area and O/C and H/C ratios of biochar: towards understanding performance of biochar using simplified approach. Journal of Hazardous Toxic and Radioactive Waste. 2020;24(4). https://doi.org/10.1061/(asce)hz.2153-5515.0000545.

  21. Chen Y, Wang R, Duan X, Wang S, Ren N, Ho S. Production, properties, and catalytic applications of sludge derived biochar for environmental remediation. Water Res. 2020;187. https://doi.org/10.1016/j.watres.2020.116390.

  22. Zhang Y, Xu X, Zhang P, Zhao L, Qiu H, Cao X. Pyrolysis-temperature depended quinone and carbonyl groups as the electron accepting sites in barley grass derived biochar. Chemosphere. 2019;232:273–80. https://doi.org/10.1016/j.chemosphere.2019.05.225.

    Article  CAS  Google Scholar 

  23. Wang X, Deng S-p, Li C, Wan J-z. Optimization of preparation conditions for biochar-loaded nano-zero-valent iron with chlorinated hydrocarbons. Journal of Ecology and Rural Environment. 2019;35(12): 1626–1632. https://doi.org/10.19741/j.issn.1673-4831.2019.0554.

  24. Shang X, Yang L, Ouyang D, Zhang B, Zhang W, Gu M, Li J, Chen M, Huang L, Qian L. Enhanced removal of 1,2,4-trichlorobenzene by modified biochar supported nanoscale zero-valent iron and palladium. Chemosphere. 2020;249. https://doi.org/10.1016/j.chemosphere.2020.126518.

  25. Zhou H, Ma M, Zhao Y, Baig SA, Hu S, Ye M, Wang J. Integrated green complexing agent and biochar modified nano zero-valent iron for hexavalent chromium removal: a characterisation and performance study. Science of the Total Environment. 2022;834. https://doi.org/10.1016/j.scitotenv.2022.155080.

  26. Ahmad S, Gao F, Lyu H, Ma J, Zhao B, Xu S, Ri C, Tang J. Temperature-dependent carbothermally reduced iron and nitrogen doped biochar composites for removal of hexavalent chromium and nitrobenzene. Chem Eng J. 2022;450. https://doi.org/10.1016/j.cej.2022.138006.

  27. Li H, Chen S, Ren LY, Zhou LY, Tan XJ, Zhu Y, Belver C, Bedia J, Yang J. Biochar mediates activation of aged nanoscale ZVI by shewanella putrefaciens CN32 to enhance the degradation of pentachlorophenol. Chem Eng J. 2019;368:148–56. https://doi.org/10.1016/j.cej.2019.02.099.

    Article  CAS  Google Scholar 

  28. •• Zhu S, Ho S, Huang X, Wang D, Yang F, Wang L, Wang C, Cao X, Ma F. Magnetic nanoscale zerovalent iron assisted biochar: interfacial chemical behaviors and heavy metals remediation performance. Acs Sustain Chem Eng. 2017;5(11):9673–82. https://doi.org/10.1021/acssuschemeng.7b00542. The surface chemical behavior of ZVI-BC and the changes of surface functional groups of biochar before and after ZVI loading were investigated.

  29. Liu X, Yang L, Zhao H, Wang W. Pyrolytic production of zerovalent iron nanoparticles supported on rice husk-derived biochar: simple, in situ synthesis and use for remediation of Cr(VI)-polluted soils. Sci Total Environ. 2020;708. https://doi.org/10.1016/j.scitotenv.2019.134479.

  30. Oh S, Seo Y, Ryu K. Reductive removal of 2,4-dinitrotoluene and 2,4-dichlorophenol with zero-valent iron-included biochar. Bioresour Technol. 2016;216:1014–21. https://doi.org/10.1016/j.biortech.2016.06.061.

    Article  CAS  Google Scholar 

  31. Huang P, Zhang P, Wang C, Tang J, Sun H. Enhancement of persulfate activation by Fe-biochar composites: synergism of Fe and N-doped biochar. Appl Catal B-Environ. 2022;303. https://doi.org/10.1016/j.apcatb.2021.120926.

  32. Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Biores Technol. 2012;107:419–28. https://doi.org/10.1016/j.biortech.2011.11.084.

    Article  CAS  Google Scholar 

  33. Guo J, Chen B. Insights on the molecular mechanism for the recalcitrance of biochars: Interactive effects of carbon and silicon components. Environ Sci Technol. 2014;48(16):9103–12. https://doi.org/10.1021/es405647e.

    Article  CAS  Google Scholar 

  34. Wang Y, Xiao X, Xu Y, Chen B. Environmental effects of silicon within biochar (sichar) and carbon-silicon coupling mechanisms: a critical review. Environ Sci Technol. 2019;53(23):13570–82. https://doi.org/10.1021/acs.est.9b03607.

    Article  CAS  Google Scholar 

  35. Xiao X, Chen B, Zhu L. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures. Environ Sci Technol. 2014;48(6):3411–9. https://doi.org/10.1021/es405676h.

    Article  CAS  Google Scholar 

  36. •• Qian L, Zhang W, Yan J, Han L, Chen Y, Ouyang D, Chen M. Nanoscale zero-valent iron supported by biochars produced at different temperatures: synthesis mechanism and effect on Cr(VI) removal. Environ Pollut. 2017;223:153–60. https://doi.org/10.1016/j.envpol.2016.12.077. This paper verified that the carboxyl group and silicon mineral of biochar were the dual support site for ZVI.

  37. Xu S, Chen J, Peng H, Leng S, Li H, Qu W, Hu Y, Li H, Jiang S, Zhou W, Leng L. Effect of biomass type and pyrolysis temperature on nitrogen in biochar, and the comparison with hydrochar. Fuel. 2021;291. https://doi.org/10.1016/j.fuel.2021.120128.

  38. Liu L, Tan Z, Ye Z. Transformation and transport mechanism of nitrogenous compounds in a biochar “preparation-returning to the field” process studied by employing an isotope tracer method. Acs Sustain Chem Eng. 2018;6(2):1780–91. https://doi.org/10.1021/acssuschemeng.7b03172.

    Article  CAS  Google Scholar 

  39. Che L, Yang B, Tian Q, Xu H. Iron-based biochar derived from waste-activated sludge enhances anaerobic digestion of synthetic salty organic wastewater for methane production. Bioresour Technol. 2022;345. https://doi.org/10.1016/j.biortech.2021.126465.

  40. Chen B, Zhou D, Zhu L. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol. 2008;42(14):5137–43. https://doi.org/10.1021/es8002684.

    Article  CAS  Google Scholar 

  41. Keiluweit M, Nico PS, Johnson MG, Kleber M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol. 2010;44(4):1247–53. https://doi.org/10.1021/es9031419.

    Article  CAS  Google Scholar 

  42. Du Y, Dai M, Naz I, Hao X, Wei X, Rong R, Peng C, Ali I. Carbothermal reduction synthesis of zero-valent iron and its application as a persulfate activator for ciprofloxacin degradation. Sep Purif Technol. 2021;275. https://doi.org/10.1016/j.seppur.2021.119201.

  43. Wei R, Cang D, Bai Y, Huang D, Liu X. Reduction characteristics and kinetics of iron oxide by carbon in biomass. Ironmak Steelmak. 2016;43(2):144–52. https://doi.org/10.1179/1743281215y.0000000061.

    Article  CAS  Google Scholar 

  44. Song Q, Zhao H, Jia J, Yang L, Lv W, Bao J, Shu X, Gu Q, Zhang P. Pyrolysis of municipal solid waste with iron-based additives: a study on the kinetic, product distribution and catalytic mechanisms. J Clean Prod. 2020;258. https://doi.org/10.1016/j.jclepro.2020.120682.

  45. Wang Y, Wang X, Hua X, Zhao C, Wang W. The reduction mechanism and kinetics of Fe2O3 by hydrogen for chemical-looping hydrogen generation. J Therm Anal Calorim. 2017;129(3):1831–8. https://doi.org/10.1007/s10973-017-6267-7.

    Article  CAS  Google Scholar 

  46. Park J, Lee Y, Ryu C, Park Y. Slow pyrolysis of rice straw: analysis of products properties, carbon and energy yields. Bioresour Technol. 2014;155:63–70. https://doi.org/10.1016/j.biortech.2013.12.084.

    Article  CAS  Google Scholar 

  47. Xue Y, Gao B, Yao Y, Inyang M, Zhang M, Zimmerman AR, Ro KS. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests. Chem Eng J. 2012;200:673–80. https://doi.org/10.1016/j.cej.2012.06.116.

    Article  CAS  Google Scholar 

  48. Yang G, Jiang H. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Res. 2014;48:396–405. https://doi.org/10.1016/j.watres.2013.09.050.

    Article  CAS  Google Scholar 

  49. Kastner JR, Miller J, Geller DP, Locklin J, Keith LH, Johnson T. Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catal Today. 2012;190(1):122–32. https://doi.org/10.1016/j.cattod.2012.02.006.

    Article  CAS  Google Scholar 

  50. Liu Q, Yang F, Sun X, Liu Z, Li G. Preparation of biochar catalyst with saccharide and lignocellulose residues of corncob degradation for corncob hydrolysis into furfural. J Mater Cycles Waste Manage. 2017;19(1):134–43. https://doi.org/10.1007/s10163-015-0392-9.

    Article  CAS  Google Scholar 

  51. Wang S, Gao B, Li Y, Mosa A, Zimmerman AR, Ma LQ, Harris WG, Migliaccio KW. Manganese oxide-modified biochars: preparation, characterization, and sorption of arsenate and lead. Bioresour Technol. 2015;181:13–7. https://doi.org/10.1016/j.biortech.2015.01.044.

    Article  CAS  Google Scholar 

  52. Huggins T, Wang H, Kearns J, Jenkins P, Ren ZJ. Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresour Technol. 2014;157:114–9. https://doi.org/10.1016/j.biortech.2014.01.058.

    Article  CAS  Google Scholar 

  53. Chen Q, Qin J, Cheng Z, Huang L, Sun P, Chen L, Shen G. Synthesis of a stable magnesium-impregnated biochar and its reduction of phosphorus leaching from soil. Chemosphere. 2018;199:402–8. https://doi.org/10.1016/j.chemosphere.2018.02.058.

    Article  CAS  Google Scholar 

  54. Yang F, Zhang S, Sun Y, Du Q, Song J, Tsang DCW. A novel electrochemical modification combined with one-step pyrolysis for preparation of sustainable thorn-like iron-based biochar composites. Bioresour Technol. 2019;274:379–85. https://doi.org/10.1016/j.biortech.2018.10.042.

    Article  CAS  Google Scholar 

  55. Yang F, Zhao L, Gao B, Xu X, Cao X. The interfacial behavior between biochar and soil minerals and its effect on biochar stability. Environ Sci Technol. 2016;50(5):2264–71. https://doi.org/10.1021/acs.est.5b03656.

    Article  CAS  Google Scholar 

  56. Qian L, Shang X, Zhang B, Zhang W, Su A, Chen Y, Ouyang D, Han L, Yan J, Chen M. Enhanced removal of Cr(VI) by silicon rich biochar-supported nanoscale zero-valent iron. Chemosphere. 2019;215:739–45. https://doi.org/10.1016/j.chemosphere.2018.10.030.

    Article  CAS  Google Scholar 

  57. Wang H, Cai J, Liao Z, Jawad A, Ifthikar J, Chen Z, Chen Z. Black liquor as biomass feedstock to prepare zero-valent iron embedded biochar with red mud for Cr(VI) removal: mechanisms insights and engineering practicality. Bioresour Technol. 2020;311. https://doi.org/10.1016/j.biortech.2020.123553.

  58. Yang C, Ge C, Li X, Li L, Wang B, Lin A, Yang W. Does soluble starch improve the removal of Cr(VI) by nZVI loaded on biochar? Ecotoxicol Environ Saf. 2021;208. https://doi.org/10.1016/j.ecoenv.2020.111552.

  59. Yang L, Shen J, Zhang W, Wu W, Wei Z, Chen M, Yan J, Qian L, Han L, Li J, Gu M. Hydrothermally assisted synthesis of nano zero-valent iron encapsulated in biomass-derived carbon for peroxymonosulfate activation: the performance and mechanisms for efficient degradation of monochlorobenzene. Sci Total Environ. 2022;829. https://doi.org/10.1016/j.scitotenv.2022.154645.

  60. Su H, Fang Z, Tsang PE, Zheng L, Cheng W, Fang J, Zhao D. Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles. J Hazard Mater. 2016;318:533–40. https://doi.org/10.1016/j.jhazmat.2016.07.039.

    Article  CAS  Google Scholar 

  61. Sun Y, Ding C, Cheng W, Wang X. Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron. J Hazard Mater. 2014;280:399–408. https://doi.org/10.1016/j.jhazmat.2014.08.023.

    Article  CAS  Google Scholar 

  62. Jing C, Li Y, Cui R, Xu J. Illite-supported nanoscale zero-valent iron for removal of U-238 from aqueous solution: characterization, reactivity and mechanism. J Radioanal Nucl Chem. 2015;304(2):859–65. https://doi.org/10.1007/s10967-014-3850-2.

    Article  CAS  Google Scholar 

  63. Li J, Chen C, Zhang R, Wang X. Nanoscale zero-valent iron particles supported on reduced graphene oxides by using a plasma technique and their application for removal of heavy-metal ions (vol 10, pg 1410, 2015). Chem Asian J. 2019;14(23):4429–4429. https://doi.org/10.1002/asia.201901451.

    Article  CAS  Google Scholar 

  64. Yan J, Han L, Gao W, Xue S, Chen M. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene. Bioresour Technol. 2015;175:269–74. https://doi.org/10.1016/j.biortech.2014.10.103.

    Article  CAS  Google Scholar 

  65. Ahmad S, Liu X, Tang J, Zhang S. Biochar-supported nanosized zero-valent iron (nZVI/BC) composites for removal of nitro and chlorinated contaminants. Chem Eng J. 2022;431. https://doi.org/10.1016/j.cej.2021.133187.

  66. Han L, Xue S, Zhao S, Yan J, Qian L, Chen M. Biochar supported nanoscale iron particles for the efficient removal of methyl orange dye in aqueous solutions. Plos One. 2015;10(7). https://doi.org/10.1371/journal.pone.0132067.

  67. Chen Z, Cheng Y, Chen Z, Megharaj M, Naidu R. Kaolin-supported nanoscale zero-valent iron for removing cationic dye-crystal violet in aqueous solution. J Nanopart Res. 2012;14(8). https://doi.org/10.1007/s11051-012-0899-0.

  68. Qian L, Liu S, Zhang W, Chen Y, Ouyang D, Han L, Yan J, Chen M. Enhanced reduction and adsorption of hexavalent chromium by palladium and silicon rich biochar supported nanoscale zero-valent iron. J Colloid Interface Sci. 2019;533:428–36. https://doi.org/10.1016/j.jcis.2018.08.075.

    Article  CAS  Google Scholar 

  69. Shu Y, Ji B, Cui B, Shi Y, Wang J, Hu M, Luo S, Guo D. Almond shell-derived, biochar-supported, nano-zero-valent iron composite for aqueous hexavalent chromium removal: performance and mechanisms. Nanomaterials. 2020;10(2). https://doi.org/10.3390/nano10020198.

  70. Wu H, Wei W, Xu C, Meng Y, Bai W, Yang W, Lin A. Polyethylene glycol-stabilized nano zero-valent iron supported by biochar for highly efficient removal of Cr(VI). Ecotoxicol Environ Saf. 2020;188. https://doi.org/10.1016/j.ecoenv.2019.109902.

  71. Chandraiah MR. Facile synthesis of zero valent iron magnetic biochar composites for Pb(II) removal from the aqueous medium. Alexa Eng J. 2016;55(1):619–25. https://doi.org/10.1016/j.aej.2015.12.015.

    Article  Google Scholar 

  72. Yang F, Zhang S, Sun Y, Cheng K, Li J, Tsang DCW. Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal. Bioresour Technol. 2018;265:490–7. https://doi.org/10.1016/j.biortech.2018.06.029.

    Article  CAS  Google Scholar 

  73. Yan J, Qian L, Gao W, Chen Y, Ouyang D, Chen M. Enhanced Fenton-like degradation of trichloroethylene by hydrogen peroxide activated with nanoscale zero valent iron loaded on biochar. Sci Rep. 2017;7. https://doi.org/10.1038/srep43051.

  74. Yao S-h, Chen X-j, Gomez MA, Ma X-c, Wang H-b, Zang S-y. One-step synthesis of zerovalent-iron-biochar composites to activate persulfate for phenol degradation. Water Sci Technol. 2019;80(10): 1851–1860. https://doi.org/10.2166/wst.2020.001.

  75. Wang H, Xiao K, Yang J, Yu Z, Yu W, Xu Q, Wu Q, Liang S, Hu J, Hou H, Liu B. Phosphorus recovery from the liquid phase of anaerobic digestate using biochar derived from iron-rich sludge: a potential phosphorus fertilizer. Water Res. 2020;174. https://doi.org/10.1016/j.watres.2020.115629.

  76. Wang J, Shen M, Gong Q, Wang X, Cai J, Wang S, Chen Z. One-step preparation of ZVI-sludge derived biochar without external source of iron and its application on persulfate activation. Sci Total Environ. 2020;714. https://doi.org/10.1016/j.scitotenv.2020.136728.

  77. Lv Z, Yang S, Chen L, Alsaedi A, Hayat T, Chen C. Nanoscale zero-valent iron/magnetite carbon composites for highly efficient immobilization of U(VI). J Environ Sci. 2019;76:377–87. https://doi.org/10.1016/j.jes.2018.06.001.

    Article  CAS  Google Scholar 

  78. Zhang H, Ruan Y, Liang A, Shih K, Diao Z, Su M, Hou La, Chen D, Lu H, Kong L. Carbothermal reduction for preparing nZVI/BC to extract uranium: insight into the iron species dependent uranium adsorption behavior. J Clean Prod. 2019;239. https://doi.org/10.1016/j.jclepro.2019.117873.

  79. Hick SM, Griebel C, Restrepo DT, Truitt JH, Buker EJ, Bylda C, Blair RG. Mechanocatalysis for biomass-derived chemicals and fuels. Green Chem. 2010;12(3):468–74. https://doi.org/10.1039/b923079c.

    Article  CAS  Google Scholar 

  80. Rojas Chavez H, Diaz de la Torre S, Jaramillo Vigueras D, Plascencia G. PbTe mechanosynthesis from PbO and Te. J Alloys Compd. 2009;483(1–2): 275–278. https://doi.org/10.1016/j.jallcom.2008.07.202.

  81. Wang K, Sun Y, Tang J, He J, Sun H. Aqueous Cr(VI) removal by a novel ball milled Fe0-biochar composite: role of biochar electron transfer capacity under high pyrolysis temperature. Chemosphere. 2020;241. https://doi.org/10.1016/j.chemosphere.2019.125044.

  82. Zhang J, Xie L, Ma Q, Liu Y, Li J, Li Z, Li S, Zhang T. Ball milling enhanced Cr(VI) removal of zero-valent iron biochar composites: functional groups response and dominant reduction species. Chemosphere. 2022;311(Pt 2):137174–137174. https://doi.org/10.1016/j.chemosphere.2022.137174.

    Article  CAS  Google Scholar 

  83. Nizamuddin S, Baloch HA, Griffin GJ, Mubarak NM, Bhutto AW, Abro R, Mazari SA, Ali BS. An overview of effect of process parameters on hydrothermal carbonization of biomass. Renew Sust Energ Rev. 2017;73:1289–99. https://doi.org/10.1016/j.rser.2016.12.122.

    Article  CAS  Google Scholar 

  84. Wei J, Liu Y, Li J, Zhu Y, Yu H, Peng Y. Adsorption and co-adsorption of tetracycline and doxycycline by one-step synthesized iron loaded sludge biochar. Chemosphere. 2019;236. https://doi.org/10.1016/j.chemosphere.2019.06.224.

  85. Min L, Zhang P, Fan M, Xu X, Wang C, Tang J, Sun H. Efficient degradation of p-nitrophenol by Fe@pomelo peel-derived biochar composites and its mechanism of simultaneous reduction and oxidation process. Chemosphere. 2021;267. https://doi.org/10.1016/j.chemosphere.2020.129213.

  86. Zhang Y, Jiao X, Liu N, Lv J, Yang Y. Enhanced removal of aqueous Cr(VI) by a green synthesized nanoscale zero-valent iron supported on oak wood biochar. Chemosphere. 2020;245. https://doi.org/10.1016/j.chemosphere.2019.125542.

  87. Wang WD, Ma HT, Lin W, Sun P, Zhang LK, Han JH. Trametes suaveolens-derived biochar loaded on nanoscale zero-valent iron particles for the adsorption and reduction of Cr(VI). Int J Environ Sci Techno. 2022;19(5):4251–64. https://doi.org/10.1007/s13762-021-03292-4.

    Article  CAS  Google Scholar 

  88. Wang H, Zhong D, Xu Y, Chang H, Shen H, Xu C, Mou J, Zhong N. Enhanced removal of Cr(VI) from aqueous solution by nano- zero-valent iron supported by koh activated sludge-based biochar. Colloids Surf A. 2022;651. https://doi.org/10.1016/j.colsurfa.2022.129697.

  89. Ning Z, Xu B, Zhong W, Liu C, Qin X, Feng W, Zhu L. Preparation of phosphoric acid modified antibiotic mycelial residues biochar: loading of nano zero-valent iron and promotion on biogas production. Bioresour Technol. 2022;348. https://doi.org/10.1016/j.biortech.2022.126801.

  90. Meng F, Zhu Y, Li H, Zhang W, Wu S, Zhang G, Li M. Effects of the remediation of Cr(VI) in soil by nanoscale zero-valent iron (nZVI) with modified biochar. Acta Scien Circum. 2017;37(12):4715–23.

    Google Scholar 

  91. Zhu L, Zhao N, Tong L, Lv Y, Li G. Characterization and evaluation of surface modified materials based on porous biochar and its adsorption properties for 2,4-dichlorophenoxyacetic acid. Chemosphere. 2018;210:734–44. https://doi.org/10.1016/j.chemosphere.2018.07.090.

    Article  CAS  Google Scholar 

  92. Wang S, Zhou Y, Gao B, Wang X, Yin X, Feng K, Wang J. The sorptive and reductive capacities of biochar supported nanoscaled zero-valent iron (nZVI) in relation to its crystallite size. Chemosphere. 2017;186:495–500. https://doi.org/10.1016/j.chemosphere.2017.08.014.

    Article  CAS  Google Scholar 

  93. Ahmed MB, Zhou JL, Ngo HH, Guo W, Johir MAH, Sornalingam K, Belhaj D, Kallel M. Nano-Fe0 immobilized onto functionalized biochar gaining excellent stability during sorption and reduction of chloramphenicol via transforming to reusable magnetic composite. Chem Eng J. 2017;322:571–81. https://doi.org/10.1016/j.cej.2017.04.063.

    Article  CAS  Google Scholar 

  94. Wu H, Feng Q. Fabrication of bimetallic Ag/Fe immobilized on modified biochar for removal of carbon tetrachloride. J Environ Sci. 2017;54:346–57. https://doi.org/10.1016/j.jes.2016.11.017.

    Article  CAS  Google Scholar 

  95. Wu H, Feng Q, Yang H, Zhu X, Gao B, Chen D, Miao Y. Nanoscale zero valent iron stabilized on modified biochar to remove cefotaxime from aqueous solutions. Acta Scien Circum. 2017;37(7):2691–8.

    CAS  Google Scholar 

  96. Li S, Yang F, Li J, Cheng K. Porous biochar-nanoscale zero-valent iron composites: synthesis, characterization and application for lead ion removal. Sci Total Environ. 2020;746. https://doi.org/10.1016/j.scitotenv.2020.141037.

  97. Dong H, Deng J, Xie Y, Zhang C, Jiang Z, Cheng Y, Hou K, Zeng G. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution. J Hazard Mater. 2017;332:79–86. https://doi.org/10.1016/j.jhazmat.2017.03.002.

    Article  CAS  Google Scholar 

  98. Chen X, Lu C, Ling S, Zhang W. Removal of decabromodiphenyl ethane (DBDPE) by biochar doped with zerovalent- nano iron in a soil system. Acta Scien Circum. 2020;40(12):4524–30.

    CAS  Google Scholar 

  99. Devi P, Saroha AK. Simultaneous adsorption and dechlorination of pentachlorophenol from effluent by Ni-ZVI magnetic biochar composites synthesized from paper mill sludge. Chem Eng J. 2015;271:195–203. https://doi.org/10.1016/j.cej.2015.02.087.

    Article  CAS  Google Scholar 

  100. Zhang R, Zhang N, Fang Z. In situ remediation of hexavalent chromium contaminated soil by CMC-stabilized nanoscale zero-valent iron composited with biochar. Water Sci Technol. 2018;77(6):1622–31. https://doi.org/10.2166/wst.2018.039.

    Article  CAS  Google Scholar 

  101. Chen Y, Lin Q, Wen X, He J, Luo H, Zhong Q, Wu L, Li J. Simultaneous adsorption of As(III) and Pb(II) by the iron-sulfur codoped biochar composite: competitive and synergistic effects. J Environ Sci. 2023;125:14–25. https://doi.org/10.1016/j.jes.2022.01.023.

    Article  Google Scholar 

  102. Li X, Jia Y, Zhou M, Su X, Sun J. High-efficiency degradation of organic pollutants with Fe, N co-doped biochar catalysts via persulfate activation. J Hazard Mater. 2020;397. https://doi.org/10.1016/j.jhazmat.2020.122764.

  103. Xu Z, Gu H, Xiong M, Wang Y, Ma C, Gu S, Jin Y, Meng Y, Zhang D, Xie H, Chen W. Investigate the multipath erasure of nitrobenzene over nanoscale zero-valent-iron/N-doped biochar hybrid with extraordinary reduction performance. Environ Res. 2023;216. https://doi.org/10.1016/j.envres.2022.114724.

  104. Li P, Lin K, Fang Z, Wang K. Enhanced nitrate removal by novel bimetallic Fe/Ni nanoparticles supported on biochar. J Clean Prod. 2017;151:21–33. https://doi.org/10.1016/j.jclepro.2017.03.042.

    Article  CAS  Google Scholar 

  105. Shao F, Zhou S, Xu J, Du Q, Chen J, Shang J. Detoxification of Cr(VI) using biochar-supported Cu/Fe bimetallic nanoparticles. Desalin Water Treat. 2019;158:121–9. https://doi.org/10.5004/dwt.2019.24186.

    Article  CAS  Google Scholar 

  106. Zhou H, Huang N, Zhao Y, Baig SA, Xiang J. Dechlorination of 2,4-dichlorophenoxyacetic acid using biochar-supported nano-palladium/iron: preparation, characterization, and influencing factors. Appl Organomet Chem. 2020;34(12). https://doi.org/10.1002/aoc.6010.

  107. Xiang Y, Xu Z, Zhou Y, Wei Y, Long X, He Y, Zhi D, Yang J, Luo L. A sustainable ferromanganese biochar adsorbent for effective levofloxacin removal from aqueous medium. Chemosphere. 2019;237. https://doi.org/10.1016/j.chemosphere.2019.124464.

  108. Johnson TL, Scherer MM, Tratnyek PG. Kinetics of halogenated organic compound degradation by iron metal. Environ Sci Technol. 1996;30(8):2634–40. https://doi.org/10.1021/es9600901.

    Article  CAS  Google Scholar 

  109. Quan G, Zhang J, Guo J, Lan Y. Removal of Cr(VI) from aqueous solution by nanoscale zero-valent iron grafted on acid-activated attapulgite. Water Air Soil Pollut. 2014;225(6). https://doi.org/10.1007/s11270-014-1979-9.

  110. Xue S, Qian L, Yan J, Gao W, Chen M, Cao Z, Shi W. Removal of Cr(VI) from aqueous using biochar carried nanoscal zero-velent iron. Chin J Environ Eng. 2016;10(6):2895–901.

    CAS  Google Scholar 

  111. Wang S, Gao B, Li Y, Creamer AE, He F. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: batch and continuous flow tests. J Hazard Mater. 2017;322:172–81. https://doi.org/10.1016/j.jhazmat.2016.01.052.

    Article  CAS  Google Scholar 

  112. Wei A, Ma J, Chen J, Zhang Y, Song J, Yu X. Enhanced nitrate removal and high selectivity towards dinitrogen for groundwater remediation using biochar-supported nano zero-valent iron. Chem Eng J. 2018;353:595–605. https://doi.org/10.1016/j.cej.2018.07.127.

    Article  CAS  Google Scholar 

  113. Zhang S, Lyu H, Tang J, Song B, Zhen M, Liu X. A novel biochar supported CMC stabilized nano zero-valent iron composite for hexavalent chromium removal from water. Chemosphere. 2019;217:686–94. https://doi.org/10.1016/j.chemosphere.2018.11.040.

    Article  CAS  Google Scholar 

  114. Luo H, Lin Q, Zhang X, Huang Z, Liu S, Jiang J, Xiao R, Liao X. New insights into the formation and transformation of active species in nZVI/BC activated persulfate in alkaline solutions. Chem Eng J. 2019;359:1215–23. https://doi.org/10.1016/j.cej.2018.11.056.

    Article  CAS  Google Scholar 

  115. Huang X, Niu X, Zhang D, Li X, Li H, Wang Z, Lin Z, Fu M. Fate and mechanistic insights into nanoscale zerovalent iron (nZVI) activation of sludge derived biochar reacted with Cr(VI). J Environ Manage. 2022;319. https://doi.org/10.1016/j.jenvman.2022.115771.

  116. Yao S, Chen X, Gomez MA, Ma X, Wang H, Zang S. One-step synthesis of zerovalent-iron-biochar composites to activate persulfate for phenol degradation. Water Sci Technol. 2019;80(10):1851–60. https://doi.org/10.2166/wst.2020.001.

    Article  CAS  Google Scholar 

  117. Ma D, Yang Y, Liu B, Xie G, Chen C, Ren N, Xing D. Zero-valent iron and biochar composite with high specific surface area via K2FeO4 fabrication enhances sulfadiazine removal by persulfate activation. Chem Eng J. 2021;408. https://doi.org/10.1016/j.cej.2020.127992.

  118. Wang Q, Li J, Poon CS. An iron-biochar composite from co-pyrolysis of incinerated sewage sludge ash and peanut shell for arsenic removal: role of silica. Environ Pollut. 2022;313. https://doi.org/10.1016/j.envpol.2022.120115.

  119. Li S, You T, Guo Y, Yao S, Zang S, Xiao M, Zhang Z, Shen Y. High dispersions of nano zero valent iron supported on biochar by one-step carbothermal synthesis and its application in chromate removal. RSC Adv. 2019;9(22):12428–35. https://doi.org/10.1039/c9ra00304e.

    Article  CAS  Google Scholar 

  120. Xiao W, Xiao LP, Lv Y, Yin W, Sanchez J, Zhai S, An Q, Sun R. Lignin-derived carbon coated nanoscale zero-valent iron as a novel bifunctional material for efficient removal of Cr(VI) and organic pollutants. Sep Purif Technol. 2022;299. https://doi.org/10.1016/j.seppur.2022.121689.

  121. Wang C, Huang R, Sun R. Green one-spot synthesis of hydrochar supported zero-valent iron for heterogeneous Fenton-like discoloration of dyes at neutral pH. J Mol Liq. 2020;320. https://doi.org/10.1016/j.molliq.2020.114421.

  122. Xu J, Cao Z, Wang Y, Zhang Y, Gao X, Ahmed MB, Zhang J, Yang Y, Zhou JL, Lowry GV. Distributing sulfidized nanoscale zerovalent iron onto phosphorus-functionalized biochar for enhanced removal of antibiotic florfenicol. Chem Eng J. 2019;359:713–22. https://doi.org/10.1016/j.cej.2018.11.180.

    Article  CAS  Google Scholar 

  123. Zhuo S, Ren H, Cao G, Xie G, Xing D, Ren N, Liu B. Highly efficient activation of persulfate by encapsulated nano-Fe0 biochar for acetaminophen degradation: rich electron environment and dominant effect of superoxide radical. Chem Eng J. 2022;440. https://doi.org/10.1016/j.cej.2022.135947.

  124. Huang W, Tang Y, Zhang X, Luo Z, Zhang J. nZVI-biochar derived from Fe3O4-loaded rabbit manure for activation of peroxymonosulfate to degrade sulfamethoxazole. J Water Process Eng. 2022;45. https://doi.org/10.1016/j.jwpe.2021.102470.

  125. Gu H, Gao Y, Xiong M, Zhang D, Chen W, Xu Z. Removal of nitrobenzene from aqueous solution by graphene/biochar supported nanoscale zero-valent-iron: reduction enhancement behavior and mechanism. Sep Purif Technol. 2021;275. https://doi.org/10.1016/j.seppur.2021.119146.

  126. Guo J, Yan C, Luo Z, Fang H, Hu S, Cao Y. Synthesis of a novel ternary HA/Fe-Mn oxides-loaded biochar composite and its application in cadmium(II) and arsenic(V) adsorption. J Environ Sci. 2019;85:168–76. https://doi.org/10.1016/j.jes.2019.06.004.

    Article  CAS  Google Scholar 

  127. Zhang Y, Peng X, Tian J, Li F, Fan X, Ma L, Zhang R. Synthesis of peroxymonosulfate composite catalyst (Fe0/Fe3O4/biochar) using waterworks sludge and walnut shell for degrading methylene blue. J Environ Chem Eng. 2021;9(6). https://doi.org/10.1016/j.jece.2021.106856.

  128. Mortazavian S, Murph SEH, Moon J. Biochar nanocomposite as an inexpensive and highly efficient carbonaceous adsorbent for hexavalent chromium removal. Mater. 2022;15(17). https://doi.org/10.3390/ma15176055.

  129. Zhang C, Lu J, Wu J. One-step green preparation of magnetic seaweed biochar/sulfidated Fe0 composite with strengthen adsorptive removal of tetrabromobisphenol a through in situ reduction. Bioresour Technol. 2020;307. https://doi.org/10.1016/j.biortech.2020.123170.

  130. Wang A, Hou J, Feng Y, Wu J, Miao L. Removal of tetracycline by biochar-supported biogenetic sulfidated zero valent iron: kinetics, pathways and mechanism. Water Res. 2022;225:119168–119168. https://doi.org/10.1016/j.watres.2022.119168.

    Article  CAS  Google Scholar 

  131. Zhang M, Li J, Wang Y. Impact of biochar-supported zerovalent iron nanocomposite on the anaerobic digestion of sewage sludge. Environ Sci Pollut Res. 2019;26(10):10292–305. https://doi.org/10.1007/s11356-019-04479-6.

    Article  CAS  Google Scholar 

  132. Peng D, Wu B, Tan H, Hou S, Liu M, Tang H, Yu J, Xu H. Effect of multiple iron-based nanoparticles on availability of lead and iron, and micro-ecology in lead contaminated soil. Chemosphere. 2019;228:44–53. https://doi.org/10.1016/j.chemosphere.2019.04.106.

    Article  CAS  Google Scholar 

  133. Liang L, Xue Y, Tian G, Mao Q, Lou Z, Wu Q, Wang Q, Du J, Meng X. Performance of selenate removal by biochar embedded nano zero-valent iron and the biological toxicity to escherichia coli. RSC Adv. 2019;9(45):26136–41. https://doi.org/10.1039/c9ra04535j.

    Article  CAS  Google Scholar 

  134. Zhang D, Shen J, Shi H, Su G, Jiang X, Li J, Liu X, Mu Y, Wang L. Substantially enhanced anaerobic reduction of nitrobenzene by biochar stabilized sulfide-modified nanoscale zero-valent iron: process and mechanisms. Environ Int. 2019;131. https://doi.org/10.1016/j.envint.2019.105020.

  135. Yu D, Cui J, Wang Y, Pei Y. Removal of ibuprofen by using a novel Fe/C granule-induced heterogeneous persulfate system at near neutral pH. Ind Eng Chem Res. 2020;59(3):1073–82. https://doi.org/10.1021/acs.iecr.9b05081.

    Article  CAS  Google Scholar 

  136. Liu Q, Sheng Y, Wang W, Li C, Zhao G. Remediation and its biological responses of Cd contaminated sediments using biochar and minerals with nanoscale zero-valent iron loading. Sci Total Environ. 2020;713. https://doi.org/10.1016/j.scitotenv.2020.136650.

  137. Xiang Y, Rene ER, Lun X, Ma W. Enhanced reductive defluorination and inhibited infiltration of fluoroglucocorticoids in a river receiving reclaimed water amended by nano zero-valent iron-modified biochar: performance and mechanisms. Bioresour Technol. 2020;306. https://doi.org/10.1016/j.biortech.2020.123127.

  138. •• Liu Q, Sheng Y, Wang W, Liu X. Efficacy and microbial responses of biochar-nanoscale zero-valent during in-situ remediation of Cd-contaminated sediment. J Clean Prod. 2021;287. https://doi.org/10.1016/j.jclepro.2020.125076. In this paper, the effects of different doses of ZVI-BC on microbial communities were discussed, which provided scientific insights for the comprehensive consideration of restoration efficiency and ecological effects when in situ fixation of heavy metal contaminants in the future.

  139. Semerad J, Sevcu A, Nguyen NHA, Hrabak P, Spanek R, Bobcikova K, Pospiskova K, Filip J, Medrik I, Kaslik J, Safarik I, Filipova A, Nosek J, Pivokonsky M, Cajthaml T. Discovering the potential of an nZVI-biochar composite as a material for the nanobioremediation of chlorinated solvents in groundwater: degradation efficiency and effect on resident microorganisms. Chemosphere. 2021;281. https://doi.org/10.1016/j.chemosphere.2021.130915.

  140. Liao C, Zhao X, Liu K, Zhong S, Li F, Fang L, Ye T, Shi H. Reactivation of passivated biochar/nanoscale zero-valent iron by an electroactive microorganism for cooperative hexavalent chromium removal and mechanisms. Huanjing Kexue. 2021;42(9): 4520–4526. https://doi.org/10.13227/j.hjkx.202010021.

  141. Yang X, Wen E, Ge C, El-Naggar A, Yu H, Wang S, Kwon EE, Song H, Shaheen SM, Wang H, Rinklebe J. Iron-modified phosphorus- and silicon-based biochars exhibited various influences on arsenic, cadmium, and lead accumulation in rice and enzyme activities in a paddy soil. J Hazard Mater. 2023;443. https://doi.org/10.1016/j.jhazmat.2022.130203.

  142. Zhang G, Ren R, Li L, Zhu Y, Miao J, Li Y, Meng S. Positive and negative effects of nanoscale zero-valent iron-enriched biochar on sulfamethoxazole remediation in contaminated soil. Ecotoxicol Environ Saf. 2022;246. https://doi.org/10.1016/j.ecoenv.2022.114133.

  143. Yang J, Tan X, Shaaban M, Cai Y, Wang B, Peng Qa. Remediation of Cr(VI)-contaminated soil by biochar-supported nanoscale zero-valent iron and the consequences for indigenous microbial communities. Nanomaterials. 2022;12(19). https://doi.org/10.3390/nano12193541.

  144. Zhang C, Li F, Wen R, Zhang H, Elumalai P, Zheng Q, Chen H, Yang Y, Huang M, Ying G. Heterogeneous electro-Fenton using three-dimension nzvi-BC electrodes for degradation of neonicotinoid wastewater. Water Res. 2020;182. https://doi.org/10.1016/j.watres.2020.115975.

  145. Yang D, Yang S, Yuan H, Wang F, Wang H, Xu J, Liu X. Co-benefits of biochar-supported nanoscale zero-valent iron in simultaneously stabilizing soil heavy metals and reducing their bioaccessibility. J Hazard Mater. 2021;418. https://doi.org/10.1016/j.jhazmat.2021.126292.

  146. Gao Y, Zhang J, Chen C, Du Y, Teng G, Wu Z. Functional biochar fabricated from waste red mud and corn straw in china for acidic dye wastewater treatment. J Clean Prod. 2021;320. https://doi.org/10.1016/j.jclepro.2021.128887.

  147. • Liu K, Zheng F, Xiao Y, Fang J, Zhao C, Zhao N, Zhao C, Zhang W, Zhang W, Qiu R. High Fe utilization efficiency and low toxicity of Fe3C@Fe0 loaded biochar for removing of tetracycline hydrochloride in wastewater. J Clean Prod. 2022;353. https://doi.org/10.1016/j.jclepro.2022.131630. This paper verified that ZVI-BC had high removal efficiency of tetracycline hydrochloride in wastewater, and could reduce toxicity to aquatic organisms.

  148. Yang D, Yang S, Wang L, Xu J, Liu X. Performance of biochar-supported nanoscale zero-valent iron for cadmium and arsenic co-contaminated soil remediation: insights on availability, bioaccumulation and health risk. Environ Pollut. 2021;290. https://doi.org/10.1016/j.envpol.2021.118054.

  149. Yang D, Zhang J, Yang S, Wang Y, Tang X, Xu J, Liu X. Biochar-supported nanoscale zero-valent iron can simultaneously decrease cadmium and arsenic uptake by rice grains in co-contaminated soil. Sci Total Environ. 2022;814. https://doi.org/10.1016/j.scitotenv.2021.152798.

  150. Ji J, Xu S, Ma Z, Mou Y. Trivalent antimony removal using carbonaceous nanomaterial loaded with zero-valent bimetal (iron/copper) and their effect on seed growth. Chemosphere. 2022;296. https://doi.org/10.1016/j.chemosphere.2022.134047.

  151. Zand AD, Tabrizi AM, Heir AV. Incorporation of biochar and nanomaterials to assist remediation of heavy metals in soil using plant species. Environ Technol Innov. 2020;20. https://doi.org/10.1016/j.eti.2020.101134.

Download references

Acknowledgements

This research was mainly supported by the National Natural Science Foundation of China (No. 22176113). The authors thank Dr. Pamela Holt (Shandong University) for the assistance in preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Fengmin Li wrote the main manuscript text, Xiao Wang performed the data analysis and prepared figures, and Chunhua Xu wrote part of the introduction, revised the manuscript, and approved the final version. All authors reviewed the manuscript.

Corresponding author

Correspondence to Chunhua Xu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Wang, X. & Xu, C. Research Progress on Structural Characteristics, Structure-Application Relationships, and Environmental Application of Biochar-Supported Zero Valent Iron (ZVI-BC). Curr Pollution Rep 9, 292–311 (2023). https://doi.org/10.1007/s40726-023-00260-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-023-00260-z

Keywords

Navigation