Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

General Research Article

Synthesis of Novel Fluoro Phenyl Triazoles Via Click Chemistry with or without Microwave Irradiation and their Evaluation as Anti-proliferative Agents in SiHa Cells

Author(s): Johana Aguilar, Elisa Leyva*, Silvia Elena Loredo-Carrillo, Agobardo Cárdenas-Chaparro, Antonio Martínez-Richa, Hiram Hernández-López, Jorge Gustavo Araujo-Huitrado, Angélica Judith Granados-López, Yamilé López-Hernández and Jesús Adrián López

Volume 21, Issue 4, 2024

Published on: 23 June, 2023

Page: [559 - 570] Pages: 12

DOI: 10.2174/1570179420666230420084000

Price: $65

Abstract

Aims: Perform the synthesis of novel fluoro phenyl triazoles via click chemistry with or without microwave irradiation and their evaluation as anti-proliferative agents in SiHa cells.

Background: Triazoles are heterocyclic compounds containing a five-member ring with two carbon and three nitrogen atoms. They are of great importance since many of them have shown to have biological activity as antifungal, antiviral, antibacterial, anti-HIV, anti-tuberculosis, vasodilator, and anticancer agents.

Objectives: Synthesize novel fluoro phenyl triazoles via click chemistry and evaluate their antiproliferative activity.

Methods: First, several fluorophenyl azides were prepared. Reacting these aryl azides with phenylacetylene in the presence of Cu(I) catalyst, the corresponding fluoro phenyl triazoles were obtained by two methodologies, stirring at room temperature and under microwave irradiation at 40ºC. In addition, their antiproliferative activity was evaluated in cervical cancer SiHa cells.

Results: Fluoro phenyl triazoles were obtained within minutes by means of microwave irradiation. The compound 3f, containing two fluorine atoms next to the carbon connected to the triazole ring, was the most potent among the fluoro phenyl triazoles tested in this study. Interestingly, the addition of a fluorine atom to the phenyl triazole structure in a specific site increases its antiproliferative effect as compared to parent phenyl triazole 3a without a fluorine atom.

Conclusion: Several fluoro phenyl triazoles were obtained by reacting fluoro phenyl azides with phenylacetylene in the presence of copper sulphate, sodium ascorbate and phenanthroline. Preparation of these triazoles with MW irradiation represents a better methodology since they are obtained within minutes and higher yields of cleaner compounds are obtained. In terms of biological studies, the proximity between fluorine atom and triazole ring increases its biological activity.

Keywords: Fluoro phenyl triazoles, click chemistry, microwave, cytotoxic activity, biological, antiproliferative effect.

Graphical Abstract
[1]
Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int. J. Mol. Sci., 2020, 21(9), 3233.
[http://dx.doi.org/10.3390/ijms21093233] [PMID: 32370233]
[2]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[3]
Woodworth, C.D.; Cheng, S.; Simpson, S.; Hamacher, L.; Chow, L.T.; Broker, T.R.; DiPaolo, J.A. Recombinant retroviruses encoding human papillomavirus type 18 E6 and E7 genes stimulate proliferation and delay differentiation of human keratinocytes early after infection. Oncogene, 1992, 7(4), 619-626.
[PMID: 1314365]
[4]
Tong, C.W.S.; Wu, M.; Cho, W.C.S.; To, K.K.W. Recent advances in the treatment of breast cancer. Front. Oncol., 2018, 8, 227.
[http://dx.doi.org/10.3389/fonc.2018.00227] [PMID: 29963498]
[5]
Nagesh, H.N.; Suresh, N.; Prakash, G.V.S.B.; Gupta, S.; Rao, J.V.; Sekhar, K.V.G.C. Synthesis and biological evaluation of novel phenanthridinyl piperazine triazoles via click chemistry as anti-proliferative agents. Med. Chem. Res., 2015, 24(2), 523-532.
[http://dx.doi.org/10.1007/s00044-014-1142-6]
[6]
Prachayasittikul, V.; Pingaew, R.; Anuwongcharoen, N.; Worachartcheewan, A.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Discovery of novel 1,2,3-triazole derivatives as anticancer agents using QSAR and in silico structural modification. Springerplus, 2015, 4(1), 571-593.
[http://dx.doi.org/10.1186/s40064-015-1352-5] [PMID: 26543706]
[7]
Mani, G.S.; Donthiboina, K.; Shaik, S.P.; Shankaraiah, N.; Kamal, A. Iodine-mediated C–N and N–N bond formation: a facile one-pot synthetic approach to 1,2,3-triazoles under metal-free and azide-free conditions. RSC Advances, 2019, 9(46), 27021-27031.
[http://dx.doi.org/10.1039/C9RA06005G] [PMID: 35528599]
[8]
Sharghi, H.; Ebrahimpourmoghaddam, S.; Doroodmand, M.M.; Purkhosrow, A. Synthesis of Vasorelaxaing 1,4-disubstituted 1,2,3-triazoles catalyzed by a 4′-phenyl-2,2′6′2”-terpyridine copper (II) complex immobilized on activated multiwalled carbon nanotubes. Asian J. Org. Chem., 2012, 1(4), 377-388.
[http://dx.doi.org/10.1002/ajoc.201200012]
[9]
Chavan, P.V.; Pandit, K.S.; Desai, U.V.; Wadgaonkar, P.P.; Nawale, L.; Bhansali, S.; Sarkar, D. Click-chemistry-based multicomponent condensation approach for design and synthesis of spirochromene-tethered 1,2,3-triazoles as potential antitubercular agents. Res. Chem. Intermed., 2017, 43(10), 5675-5690.
[http://dx.doi.org/10.1007/s11164-017-2955-y]
[10]
Aguilar-Morales, C.M.; de Loera, D.; Contreras-Celedón, C.; Cortés-García, C.J.; Chacón-García, L. Synthesis of 1,5-disubstituted tetrazole-1,2,3 triazoles hybrids via Ugi-azide/CuAAC. Synth. Commun., 2019, 49(16), 2086-2095.
[http://dx.doi.org/10.1080/00397911.2019.1616301]
[11]
Peyton, L.R.; Gallagher, S.; Hashemzadeh, M. Triazole antifungals: a review. Drugs Today (Barc), 2015, 51(12), 705-718.
[PMID: 26798851]
[12]
Kirk, K.L. Fluorine in medicinal chemistry: Recent therapeutic applications of fluorinated small molecules. J. Fluor. Chem., 2006, 127(8), 1013-1029.
[http://dx.doi.org/10.1016/j.jfluchem.2006.06.007]
[13]
Leyva, E.; Platz, M.S.; Loredo-Carrillo, S.E.; Aguilar, J. Fluoro Aryl Azides: Synthesis, Reactions and Applications. Curr. Org. Chem., 2020, 24(11), 1161-1180.
[http://dx.doi.org/10.2174/1385272824999200608132505]
[14]
Prasanna Kumar, B.N.; Mohana, K.N.; Mallesha, L. Synthesis and antiproliferative activity of some new fluorinated Schiff bases derived from 1,2,4-triazoles. J. Fluor. Chem., 2013, 156, 15-20.
[http://dx.doi.org/10.1016/j.jfluchem.2013.08.008]
[15]
Díaz, D.D.; Finn, M.G.; Sharpless, K.B.; Fokin, V.; Hawker, J. Cicloadición 1,3-dipolar de azidas y alquinos. I: Principales aspectos sintéticos. An. Quím., 2008, 104(3), 173-180.
[16]
Kategaonkar, A.H.; Shinde, P.V.; Kategaonkar, A.H.; Pasale, S.K.; Shingate, B.B.; Shingare, M.S. Synthesis and biological evaluation of new 2-chloro-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)quinoline derivatives via click chemistry approach. Eur. J. Med. Chem., 2010, 45(7), 3142-3146.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.002] [PMID: 20435389]
[17]
Appukkuttan, P.; Dehaen, W.; Fokin, V.V.; Van der Eycken, E. A microwave-assisted click chemistry synthesis of 1,4-disubstituted 1,2,3-triazoles via a copper(I)-catalyzed three-component reaction. Org. Lett., 2004, 6(23), 4223-4225.
[http://dx.doi.org/10.1021/ol048341v] [PMID: 15524448]
[18]
Suárez, A. Reacciones de cicloadición 1,3-dipolares a alquinos catalizadas por cobre. An. Quím., 2012, 108(4), 306-313.
[19]
Hajipour, A.R.; Karimzadeh, M.; Fakhari, F.; Karimi, H. CuFeO 2/tetrabutylammonium bromide catalyzes selective synthesis of 1,4-disubstituted 1,2,3-triazoles in neat water at room temperature. Appl. Organomet. Chem., 2016, 30(11), 946-948.
[http://dx.doi.org/10.1002/aoc.3526]
[20]
Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67(9), 3057-3064.
[http://dx.doi.org/10.1021/jo011148j] [PMID: 11975567]
[21]
Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V.V.; Noodleman, L.; Sharpless, K.B.; Fokin, V.V. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc., 2005, 127(1), 210-216.
[http://dx.doi.org/10.1021/ja0471525] [PMID: 15631470]
[22]
Noriega, S.; Leyva, E.; Moctezuma, E.; Flores, L.; Loredo-Carrillo, S. Recent Catalysts Used in the Synthesis of 1,4-Disubstituted 1,2,3-Triazoles by Heterogeneous and Homogeneous Methods. Curr. Org. Chem., 2020, 24(5), 536-549.
[http://dx.doi.org/10.2174/1385272824666200226120135]
[23]
Bock, V.D.; Hiemstra, H.; van Maarseveen, J.H. Cu I -Catalyzed Alkyne–Azide “Click” Cycloadditions from a Mechanistic and Synthetic Perspective. Eur. J. Org. Chem., 2006, 2006(1), 51-68.
[http://dx.doi.org/10.1002/ejoc.200500483]
[24]
Horne, W.S.; Stout, C.D.; Ghadiri, M.R. A heterocyclic peptide nanotube. J. Am. Chem. Soc., 2003, 125(31), 9372-9376.
[http://dx.doi.org/10.1021/ja034358h] [PMID: 12889966]
[25]
Singh, H.; Kumar, V. Copper (I) catalyzed azide-alkyne click reaction: Synthesis and metal-ion binding studies of some 1,2,3-triazole derivatives. Asian J. Chem., 2016, 28(3), 613-616.
[http://dx.doi.org/10.14233/ajchem.2016.19431]
[26]
Yoo, E.J.; Ahlquist, M.; Kim, S.H.; Bae, I.; Fokin, V.V.; Sharpless, K.B.; Chang, S. Copper-Catalyzed Synthesis ofN-Sulfonyl-1,2,3-triazoles. Controlling Selectivity. Angew. Chem. Int. Ed., 2007, 46(10), 1730-1733.
[http://dx.doi.org/10.1002/anie.200604241] [PMID: 17397087]
[27]
Fu, N.; Wang, S.; Zhang, Y.; Zhang, C.; Yang, D.; Weng, L.; Zhao, B.; Wang, L. Efficient click chemistry towards fatty acids containing 1,2,3-triazole: Design and synthesis as potential antifungal drugs for Candida albicans. Eur. J. Med. Chem., 2017, 136, 596-602.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.001] [PMID: 28551587]
[28]
Thirukovela, N.S.; Kankala, S.; Kankala, R.K.; Paidakula, S.; Gangula, M.R.; Vasam, C.S.; Vadde, R. Regioselective synthesis of some new 1,4-disubstituted sulfonyl-1,2,3-triazoles and their antibacterial activity studies. Med. Chem. Res., 2017, 26(9), 2190-2195.
[http://dx.doi.org/10.1007/s00044-017-1926-6]
[29]
Ye, W.; Xiao, X.; Wang, L.; Hou, S.; Hu, C. Synthesis of mono and binuclear Cu(II) complexes bearing unsymmetrical bipyridine-pyrazole-amine ligand and their applications in azide-alkyne cycloaddition. Organometallics, 2017, 36(11), 2116-2125.
[http://dx.doi.org/10.1021/acs.organomet.7b00154]
[30]
Keivanloo, A.; Bakherad, M.; Lotfi, M. Use of ligand-assisted click reactions for the rapid synthesis of novel 1,2,3-triazole pharmacophore-based 1,2,4-triazines and their benzo-fused analogues. Tetrahedron, 2017, 73(40), 5872-5882.
[http://dx.doi.org/10.1016/j.tet.2017.08.041]
[31]
Dixit, D.; Verma, P.K.; Marwaha, R.K. A review on ‘triazoles’: their chemistry, synthesis and pharmacological potentials. J. Indian Chem. Soc., 2021, 18(10), 2535-2565.
[http://dx.doi.org/10.1007/s13738-021-02231-x]
[32]
Dai, J.; Tian, S.; Yang, X.; Liu, Z. Synthesis methods of 1,2,3-/1,2,4-triazoles: A review. Front Chem., 2022, 1-24.
[33]
Rashdan, H.R.M.; Shehadi, I.A. Triazoles synthesis & applications as nonsteroidal aromatase inhibitors for hormone-dependent breast cancer treatment. Heteroat. Chem., 2022, 1-16.
[34]
El Abbouchi, A.; El Brahmi, N.; Hiebel, M.A.; Bignon, J.; Guillaumet, G.; Suzenet, F.; El Kazzouli, S. Synthesis and evaluation of a novel class of ethacrynic acid derivatives containing triazoles as potent anticancer agents. Bioorg. Chem., 2021, 115, 105293.
[http://dx.doi.org/10.1016/j.bioorg.2021.105293] [PMID: 34426162]
[35]
Kazeminejad, Z.; Marzi, M.; Shiroudi, A.; Kouhpayeh, S.A.; Farjam, M.; Zarenezhad, E. Novel 1, 2, 4-Triazoles as antifungal agents. BioMed Res. Int., 2022, 2022, 1-39.
[http://dx.doi.org/10.1155/2022/4584846] [PMID: 35360519]
[36]
Oubella, A.; Bimoussa, A.; N’ait Oussidi, A.; Fawzi, M.; Auhmani, A.; Morjani, H.; Riahi, A.; Esseffar, M.; Parish, C.; Ait Itto, M.Y. New 1,2,3-Triazoles from (R)-Carvone: Synthesis, DFT mechanistic study and in vitro cytotoxic evaluation. Molecules, 2022, 27(3), 769.
[http://dx.doi.org/10.3390/molecules27030769] [PMID: 35164037]
[37]
Kuczynska, K. Bończak, B.; Rárová, L.; Kvasnicová, M.; Strnad, M.; Pakulski, Z.; Cmoch, P.; Fiałkowski, M. Synthesis and cytotoxic activity of 1,2,3-triazoles derived from 2,3-seco-dihydrobetulin via a click chemistry approach. J. Mol. Struct., 2022, 1250, 131751.
[http://dx.doi.org/10.1016/j.molstruc.2021.131751]
[38]
Hadiyal, S.D.; Lalpara, J.N.; Parmar, N.D.; Joshi, H.S. Microwave irradiated targeted synthesis of pyrrolobenzodiazepine embrace 1,2,3-Triazole by click chemistry synthetic aspect and evaluation of anticancer and antimicrobial activity. Polycycl. Aromat. Compd., 2021, 42(7), 1-17.
[39]
Khattab, R.R.; Alshamari, A.K.; Hassan, A.A.; Elganzory, H.H.; El-Sayed, W.A.; Awad, H.M.; Nossier, E.S.; Hassan, N.A. Click chemistry based synthesis, cytotoxic activity and molecular docking of novel triazole-thienopyrimidine hybrid glycosides targeting EGFR. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 504-516.
[http://dx.doi.org/10.1080/14756366.2020.1871335] [PMID: 33504239]
[40]
Agrahari, A.K.; Bose, P.; Jaiswal, M.K.; Rajkhowa, S.; Singh, A.S.; Hotha, S.; Mishra, N.; Tiwari, V.K. Cu(I)-Catalyzed click chemistry in glycoscience and their diverse applications. Chem. Rev., 2021, 121(13), 7638-7956.
[http://dx.doi.org/10.1021/acs.chemrev.0c00920] [PMID: 34165284]
[41]
Meldal, M.; Diness, F. Recent fascinating aspects of the CuAAC click reaction. Trends Chem., 2020, 2(6), 569-584.
[http://dx.doi.org/10.1016/j.trechm.2020.03.007]
[42]
Devaraj, N.K.; Finn, M.G. Introduction: Click chemistry. Chem. Rev., 2021, 121(12), 6697-6698.
[http://dx.doi.org/10.1021/acs.chemrev.1c00469] [PMID: 34157843]
[43]
Li, L.; Zhang, Z. Development and applications of the Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) as a bioorthogonal reaction. Molecules, 2016, 21(10), 1393.
[http://dx.doi.org/10.3390/molecules21101393] [PMID: 27783053]
[44]
Vala, D.P.; Vala, R.M.; Patel, H.M. Versatile synthetic platform for 1,2,3-Triazole chemistry. ACS Omega, 2022, 7(42), 36945-36987.
[http://dx.doi.org/10.1021/acsomega.2c04883] [PMID: 36312377]
[45]
Dias, C.D.S.; Lima, T.D.M.; Lima, C.G.S.; Zuekrman-Schpector, J.; Schwab, R.S. CuO nanoparticles as an efficient heterogeneous catalyst for the 1,3-Dipolar Cycloaddition od Dicarbonyl compounds to azides. ChemistrySelect, 2018, 3(22), 6195-6202.
[http://dx.doi.org/10.1002/slct.201800816]
[46]
Souza, J.F.; Costa, G.P.; Luque, R.; Alves, D.; Fajardo, A.R. Polysaccharide-based superporous hydrogel embedded with copper nanoparticles: A green and versatile catalyst for the synthesis of 1,2,3-triazoles. Catal. Sci. Technol., 2019, 9(1), 136-145.
[http://dx.doi.org/10.1039/C8CY01796D]
[47]
Ebrahimpour-Malamir, F.; Hosseinnejad, T.; Mirsafaei, R.; Heravi, M.M. Synthesis, characterization and computational study of CuI nanoparticles immobilized on modified poly (styrene-co-maleic anhydride) as a green, efficient and recyclable heterogeneous catalyst in the synthesis of 1,4-disubstituted 1,2,3-triazoles via click. Appl. Organomet. Chem., 2018, 32(1), e3913.
[http://dx.doi.org/10.1002/aoc.3913]
[48]
Ghosh, S.; Saha, S.; Sengupta, D.; Chattopadhyay, S.; De, G.; Basu, B. Stabilized Cu 2 O nanoparticles on macroporous Polystyrene Resins [Cu 2 O@ARF]: Improved and reusable heterogeneous catalyst for on-water synthesis of triazoles via click reaction. Ind. Eng. Chem. Res., 2017, 56(41), 11726-11733.
[http://dx.doi.org/10.1021/acs.iecr.7b02656]
[49]
Fehér, K.; Nagy, E.; Szabó, P.; Juzsakova, T.; Srankó, D.; Gömöry, Á.; Kollár, L.; Skoda-Földes, R. Heterogeneous azide–alkyne cycloaddition in the presence of a copper catalyst supported on an ionic liquid polymer/silica hybrid material. Appl. Organomet. Chem., 2018, 32(6), e4343.
[http://dx.doi.org/10.1002/aoc.4343]
[50]
Ghosh, B.K.; Moitra, D.; Chandel, M.; Patra, M.K.; Vadera, S.R.; Ghosh, N.N. CuO nanoparticle immobilised mesoporous TiO2–Cobalt ferrite nanocatalyst: A versatile, magnetically separable and reusable catalyst. Catal. Lett., 2017, 147(4), 1061-1076.
[http://dx.doi.org/10.1007/s10562-017-1993-9]
[51]
Leyva, E.; Munoz, D.; Platz, M.S. Photochemistry of fluorinated aryl azides in toluene solution and in frozen polycrystals. J. Org. Chem., 1989, 54(25), 5938-5945.
[http://dx.doi.org/10.1021/jo00286a028]
[52]
Hernández-López, H.; Leyva-Ramos, S.; Moncada-Martínez, R.D.; López, J.A.; Cardoso-Ortiz, J. Copper(I)-catalyzed azide-alkyne cycloaddition microwave-assisted: Preparation of 7-(4-substituted-1H-1,2,3-triazol-1-yl)-fluoroquinolones. ChemistrySelect, 2019, 4(40), 11899-11902.
[http://dx.doi.org/10.1002/slct.201903254]
[53]
Brase, S.; Banert, K. Organic Azides: Synthesis and Applications; John Wiley & Sons Inc., 2010.
[54]
Leyva, E.; López, L.I.; Loredo-Carrillo, S.E.; Rodríguez-Kessler, M.; Montes-Rojas, A. Synthesis, spectral and electrochemical characterization of novel 2-(fluoroanilino)-1,4-naphthoquinones. J. Fluor. Chem., 2011, 132(2), 94-101.
[http://dx.doi.org/10.1016/j.jfluchem.2010.12.001]
[55]
Leyva, E.; Loredo-Carrillo, S.E.; López, L.I. Catalytic, ultrasonic and microwave-assisted synthesis of Napthoquinone derivatives by intermolecular and intramolecular N-arylation reactions. In: Green and Sustainable Process for Chemical and Environmental Engineering and Science. Microwaves in Organic Synthesis; Inamuddin, R.B.; Asiri, A.M., Eds.; Elsevier Publishers: USA, 2020; pp. 231-264.
[56]
Córdova-Rivas, S.; Araujo-Huitrado, J.G.; Rivera-Avalos, E.; Escalante-García, I.L.; Durón-Torres, S.M.; López-Hernández, Y.; Hernández-López, H.; López, L.; de Loera, D.; López, J.A. Differential proliferation effect of the newly synthesized valine, tyrosine, and tryptophan-naphthoquinones in immortal and tumorigenic cervical cell lines. Molecules, 2020, 25(9), 2058-2076.
[http://dx.doi.org/10.3390/molecules25092058] [PMID: 32354078]
[57]
Rivera-Ávalos, E.; de Loera, D.; Araujo-Huitrado, J.G.; Escalante-García, I.L.; Muñoz-Sánchez, M.A.; Hernández, H.; López, J.A.; López, L. Synthesis of amino acid-Naphthoquinones and in vitro studies on cervical and breast cell lines. Molecules, 2019, 24(23), 4285-4299.
[http://dx.doi.org/10.3390/molecules24234285] [PMID: 31775253]
[58]
Sánchez-Miranda, G.; Hernández-López, H.; Araujo-Huitrado, J.G.; Granados-López, A.J.; López, J.A.; Leyva-Ramos, S.; Chacón-García, L. Synthesis of hybrid fluoroquinolone-boron complexes and their evaluation in cervical cancer cell lines. J. Chem., 2019, 2019, 1-6.
[59]
Madasu, C.; Karri, S.; Sangaraju, R.; Sistla, R.; Uppuluri, M.V. Synthesis and biological evaluation of some novel 1,2,3-triazole hybrids of myrrhanone B isolated from Commiphora mukul gum resin: Identification of potent antiproliferative leads active against prostate cancer cells (PC-3). Eur. J. Med. Chem., 2020, 188, 111974.
[http://dx.doi.org/10.1016/j.ejmech.2019.111974] [PMID: 31883489]
[60]
Bózsity, N.; Minorics, R.; Szabó, J.; Mernyák, E.; Schneider, G.; Wölfling, J.; Wang, H.C.; Wu, C.C.; Ocsovszki, I.; Zupkó, I. Mechanism of antiproliferative action of a new d -secoestrone-triazole derivative in cervical cancer cells and its effect on cancer cell motility. J. Steroid Biochem. Mol. Biol., 2017, 165(Pt B), 247-257.
[http://dx.doi.org/10.1016/j.jsbmb.2016.06.013] [PMID: 27363663]
[61]
Sztanke, K.; Tuzimski, T.; Rzymowska, J.; Pasternak, K. Kandefer-Szerszeń, M. Synthesis, determination of the lipophilicity, anticancer and antimicrobial properties of some fused 1,2,4-triazole derivatives. Eur. J. Med. Chem., 2008, 43(2), 404-419.
[http://dx.doi.org/10.1016/j.ejmech.2007.03.033] [PMID: 17531354]
[62]
Padhariya, K.N.; Athavale, M.; Srivastava, S.; Kharkar, P.S. A novel series of substituted 1,2,3-triazoles as cancer stem cell inhibitors: Synthesis and biological evaluation. Drug Dev. Res., 2021, 82(1), 68-85.
[http://dx.doi.org/10.1002/ddr.21723] [PMID: 32783257]
[63]
Vanaparthi, S.; Bantu, R.; Jain, N.; Janardhan, S.; Nagarapu, L. Synthesis and anti-proliferative activity of a novel 1,2,3-triazole tethered chalcone acetamide derivatives. Bioorg. Med. Chem. Lett., 2020, 30(16), 127304.
[http://dx.doi.org/10.1016/j.bmcl.2020.127304] [PMID: 32631524]
[64]
Lambert, P.A.; Somers, K.D.; Kohn, E.C.; Perry, R.R. Antiproliferative and antiinvasive effects of carboxyamido-triazole on breast cancer cell lines. Surgery, 1997, 122(2), 372-379.
[http://dx.doi.org/10.1016/S0039-6060(97)90029-5] [PMID: 9288143]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy