Skip to main content
Log in

The Relative Importance of Coarse-Scale Climate and Fine-Scale Nitrogen Availability Contrasts in Driving Home-Field Advantage Effects in Litter Decomposition

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Understanding the relative importance of climates at coarse scales and nitrogen (N) availability at fine scales in driving litter decomposition is crucial for ecosystem functioning. In this study, we explored the relative importance of coarse-scale climatic contrast (China vs. France) and local soil fertility contrast related to N availability in determining ‘home-field advantage (HFA)’ effects. Four tree-species litters from four forest types with contrasting chemical properties from China and France were reciprocally transplanted in a litterbag decomposition experiment. The Decomposer Ability Regression Test showed highly significant HFA effects for the Chinese litter (Castanopsis eyrei), that is, the most recalcitrant litter with low P and N contents, and marginally significant HFA effects for the French litter (Carpinus betulus), that is, the most labile litter with high P and N contents. The climatic contrast was more important in determining HFA effects than the N availability contrast. Our findings highlight the importance of climate in determining the occurrence of HFA effects that likely can be attributed to differences in soil weathering intensity driving soil P legacy, an important coarse-scale component of soil fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Data Availability

Data are available at: https://doi.org/10.6084/m9.figshare.22339537.

References

  • Aerts R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 439–449.

  • Austin AT, Vitousek PM. 2000. Precipitation, decomposition and litter decomposability of Metrosideros polymorpha in native forests on Hawai’i. Journal of Ecology 88:129–138.

    Article  Google Scholar 

  • Ayres E, Dromph KM, Bardgett RD. 2006. Do plant species encourage soil biota that specialise in the rapid decomposition of their litter? Soil Biology and Biochemistry 38:183–186.

    Article  CAS  Google Scholar 

  • Ayres E, Steltzer H, Simmons BL, Simpson RT, Steinweg JM, Wallenstein MD, Mellor N, Parton WJ, Moore JC, Wall DH. 2009a. Home-field advantage accelerates leaf litter decomposition in forests. Soil Biology and Biochemistry 41:606–610.

    Article  CAS  Google Scholar 

  • Ayres E, Steltzer H, Berg S, Wall DH. 2009b. Soil biota accelerate decomposition in high-elevation forests by specializing in the breakdown of litter produced by the plant species above them. Journal of Ecology 97:901–912.

    Article  Google Scholar 

  • Bachega LR, Bouillet JP, de Cássia Piccolo M, Saint-André L, Bouvet JM, Nouvellon Y, Gonçalves JL, M, Robin A, Laclau JP. 2016. Decomposition of Eucalyptus grandis and Acacia mangium leaves and fine roots in tropical conditions did not meet the Home Field Advantage hypothesis. Forest Ecology and Management 359:33–43.

    Article  Google Scholar 

  • Bardgett RD, Wardle DA. 2010. Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. Oxford University Press.

    Google Scholar 

  • Berger TW, Duboc O, Djukic I, Tatzber M, Gerzabek MH, Zehetner F. 2015. Decomposition of beech (Fagus sylvatica) and pine (Pinus nigra) litter along an Alpine elevation gradient: decay and nutrient release. Geoderma 251:92–104.

    Article  PubMed  Google Scholar 

  • Bradford MA, Warren RJ II, Baldrian P, Crowther TW, Maynard DS, Oldfield EE, Wieder WR, Wood SA, King JR. 2014. Climate fails to predict wood decomposition at regional scales. Nature Climate Change 4:625–630.

    Article  CAS  Google Scholar 

  • Bradford MA, Berg B, Maynard DS, Wieder WR, Wood SA. 2016. Understanding the dominant controls on litter decomposition. Journal of Ecology 104:229–238.

    Article  CAS  Google Scholar 

  • Bradford MA, Veen GC, Bonis A, Bradford EM, Classen AT, Cornelissen JHC, Crowther TW, De Long JR, Freschet GT, Kardol P, Manrubia-Freixa M, Maynard DS, Newman GS, Logtestijn RSP, Viketoft M, Wardle DA, Wieder WR, Wood SA, van der Putten WH. 2017. A test of the hierarchical model of litter decomposition. Nature Ecology & Evolution 1:1836–1845.

    Article  Google Scholar 

  • Canessa R, van den Brink L, Saldaña A, Rios RS, Hättenschwiler S, Mueller CW, ... Bader MY. 2021. Relative effects of climate and litter traits on decomposition change with time, climate and trait variability. Journal of Ecology 109: 447–458.

  • Cebrian J. 1999. Patterns in the fate of production in plant communities. The American Naturalist 154:449–468.

    Article  PubMed  Google Scholar 

  • Chomel M, Guittonny-Larchevêque M, DesRochers A, Baldy V. 2015. Home field advantage of litter decomposition in pure and mixed plantations under boreal climate. Ecosystems 18:1014–1028.

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JH, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie E, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, Bodegom PV, Brovkin V, Chatain A, and others. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11:1065–1071.

    Article  PubMed  Google Scholar 

  • Cornwell WK, Westob M, Falster DS, FitzJohn RG, O’Meara BC, Pennell MW, McGlinn DJ, Eastman JM, Moles AT, Reich PB, Tank DC, Wright IJ, Aarssen L, Beaulieu JM, Kooyman RM, Leishman MR, Miller ET, Niinemets U, Oleksyn J, Ordonez A. 2014. Functional distinctiveness of major plant lineages. Journal of Ecology 102:345–356.

    Article  Google Scholar 

  • Coûteaux MM, Bottner P, Berg B. 1995. Litter decomposition, climate and liter quality. Trends in Ecology & Evolution 10:63–66.

    Article  Google Scholar 

  • Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, Vitousek PM. 1995. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76:1407–1424.

    Article  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Gallardo A, Bowker MA, Wallenstein MD, Quero JL, Ochoa V, Gozalo B, García-Gómez M, Soliveres S, García-Palacios P, Berdugo M, Valencia E, Escolar C, Arredondo T, Barraza-Zepeda C, Bran D, Antonio Carreira J, Chaieb M, Conceição AA, and others. 2013. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502:672–676.

    Article  CAS  PubMed  Google Scholar 

  • Díaz S, Kattge J, Cornelissen JH, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, and others. 2016. The global spectrum of plant form and function. Nature 529:167–171.

    Article  PubMed  Google Scholar 

  • Duchaufour P. 1997. Abrégé de Pédologie; Sol, Végétation, Environnement. Paris, Masson.

  • Fanin N, Lin D, Freschet GT, Keiser AD, Augusto L, Wardle DA, Veen GF. 2021. Home-field advantage of litter decomposition: from the phyllosphere to the soil. New Phytologist 231:1353–1358.

    Article  PubMed  Google Scholar 

  • Freschet GT, Aerts R, Cornelissen JH. 2012. Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis. Journal of Ecology 100:619–630.

    Article  Google Scholar 

  • García-Palacios P, Maestre FT, Kattge J, Wall DH. 2013. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecology Letters 16:1045–1053.

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Palacios P, McKie BG, Handa IT, Frainer A, Hättenschwiler S. 2016. The importance of litter traits and decomposers for litter decomposition: a comparison of aquatic and terrestrial ecosystems within and across biomes. Functional Ecology 30:819–829.

    Article  Google Scholar 

  • Gießelmann UC, Martins KG, Brändle M, Schädle M, Marques R, Brandl R. 2011. Lack of home-field advantage in the decomposition of leaf litter in the Atlantic Rainforest of Brazil. Applied Soil Ecology 49:5–10.

    Article  Google Scholar 

  • Graça MAS, Bärlocher F, Gessner MO. 2005. Methods to study litter decomposition: a practical guide. In: Springer.

  • Gregorich EG, Janzen H, Ellert BH, Helgason BL, Qian B, Zebarth BJ, Angers DA, Beyaert RP, Drury CF, Duguid SD, May WE, Mcconkey BG, Dyck MF. 2017. Litter decay controlled by temperature, not soil properties, affecting future soil carbon. Global Change Biology 23:1725–1734.

    Article  PubMed  Google Scholar 

  • Helfenstein J, Tamburini F, von Sperber C, Massey MS, Pistocchi C, Chadwick OA, Vitousek PM, Kretzschmar R, Frossard E. 2018. Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil. Nature Communications 9:1–9.

    Article  CAS  Google Scholar 

  • Hou E, Chen C, Luo Y, Zhou G, Kuang Y, Zhang Y, ... & Wen D. 2018. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Global Change Biology 24: 3344–3356.

  • Hunt HW, Ingham ER, Coleman DC, Elliot ET, Reid CPP. 1988. Nitrogen limitation of production and decomposition in prairie, mountain meadow, and pine forest. Ecology 69:1009–1016.

    Article  Google Scholar 

  • John MGS, Orwin KH, Dickie IA. 2011. No ‘home’versus ‘away’effects of decomposition found in a grassland–forest reciprocal litter transplant study. Soil Biology and Biochemistry 43:1482–1489.

    Article  Google Scholar 

  • Johnson AH, Frizano J, Vann DR. 2003. Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure. Oecologia 135:487–499.

    Article  PubMed  Google Scholar 

  • Jones JB. 2001. Laboratory guide for conducting soil tests and plant analysis. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Keiser AD, Bradford MA. 2017. Climate masks decomposer influence in a cross-site litter decomposition study. Soil Biology and Biochemistry 107:180–187.

    Article  CAS  Google Scholar 

  • Keiser AD, Keiser DA, Strickland MS, Bradford MA. 2014. Disentangling the mechanisms underlying functional differences among decomposer communities. Journal of Ecology 102:603–609.

    Article  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RH. 2017. lmerTest package: tests in linear mixed effects models. Journal of Statistical Software 82:1–26.

    Article  Google Scholar 

  • Legendre P, Mi X, Ren H, Ma K, Yu M, Sun IF, He F. 2009. Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90:663–674.

    Article  PubMed  Google Scholar 

  • Lin D, Lai J, Muller-Landau HC, Mi X, Ma K. 2012. Topographic variation in aboveground biomass in a subtropical evergreen broad-leaved forest in China. PloS one 7:e48244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin D, Pang M, Fanin N, Wang H, Qian S, Zhao L, Yang Y, Mi X, Ma K. 2019. Fungi participate in driving home-field advantage of litter decomposition in a subtropical forest. Plant and Soil 434:467–480.

    Article  CAS  Google Scholar 

  • López-Mondéjar R, Brabcová V, Štursová M, Davidová A, Jansa J, Cajthaml T, Baldrian P. 2018. Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling. The ISME Journal 12:1768–1778.

    Article  PubMed  PubMed Central  Google Scholar 

  • Manzoni S, Jackson RB, Trofymow JA, Porporato A. 2008. The global stoichiometry of litter nitrogen mineralization. Science 321:684–686.

    Article  CAS  PubMed  Google Scholar 

  • Mooshammer M, Wanek W, Schnecker J, Wild B, Leitner S, Hofhansl, F, ... & Richter A. 2012. Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology 93: 770–782.

  • Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter AA. 2014. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Frontiers in Microbiology 22.

  • Myers JA, Chase JM, Jiménez I, Jørgensen PM, Araujo-Murakami A, Paniagua-Zambrana N, Seidel R. 2013. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecology Letters 16:151–157.

    Article  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, and others, 2018. vegan: Community Ecology Package. R package version 2.5-2.

  • Peltzer DA, Wardle DA, Allison VJ, Baisden WT, Bardgett RD, Chadwick OA, Condron LM, Parfitt RL, Porder S, Richardson SJ, Turner BL, Vitousek PM, Walker J, Walker LR. 2010. Understanding ecosystem retrogression. Ecological Monographs 80:509–529.

    Article  Google Scholar 

  • Porder SP, Chadwick OA. 2009. Climate and soil age constraints on nutrient uplift and retention by plants. Ecology 90:623–636.

    Article  PubMed  Google Scholar 

  • R Core Team. 2018. R: A language and environment for statistical computing.

  • Read DJ, Perez-Moreno J. 2003. Mycorrhizas and nutrient cycling in ecosystems–a journey towards relevance? New Phytologist 157:475–492.

    Article  CAS  PubMed  Google Scholar 

  • Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD. 1999. Generality of leaf trait relationships: a test across six biomes. Ecology 80:1955–1969.

    Article  Google Scholar 

  • Smith GR, Wan J. 2019. Resource-ratio theory predicts mycorrhizal control of litter decomposition. New Phytologist 223:1595–1606.

    Article  CAS  PubMed  Google Scholar 

  • Strickland MS, Osburn E, Lauber C, Fierer N, Bradford MA. 2009a. Litter quality is in the eye of the beholder: initial decomposition rates as a function of inoculum characteristics. Functional Ecology 23:627–636.

    Article  Google Scholar 

  • Strickland MS, Lauber C, Fierer N, Bradford MA. 2009b. Testing the functional significance of microbial community composition. Ecology 90:441–451.

    Article  PubMed  Google Scholar 

  • Veen GF, Sundqvist MK, Wardle DA. 2015a. Environmental factors and traits that drive plant litter decomposition do not determine home-field advantage effects. Functional Ecology 29:981–991.

    Article  Google Scholar 

  • Veen GF, Freschet GT, Ordonez A, Wardle DA. 2015b. Litter quality and environmental controls of home-field advantage effects on litter decomposition. Oikos 124:187–195.

    Article  Google Scholar 

  • Veen GF, Keiser AD, van der Putten WH, Wardle DA. 2018. Variation in home-field advantage and ability in leaf litter decomposition across successional gradients. Functional Ecology 32:1563–1574.

    Article  Google Scholar 

  • Wang X, Gossart M, Guinet Y, Fau H, Lavignasse-Scaglia CD, Chaieb G, Michalet R. 2020. The consistency of home-field advantage effects with varying climate conditions. Soil Biology and Biochemistry 149:107934.

    Article  CAS  Google Scholar 

  • Wardle DA, Walker LR, Bardgett RD. 2004. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 30:509–513.

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, et al. 2004. The worldwide leaf economics spectrum. Nature 428:821–827.

    Article  CAS  PubMed  Google Scholar 

  • Yang LH, Ye W, Zhu LD, Li FQ, Shen YQ. 2005. A summary of the Quaternary red earth dating research in southern China. Tropical Geography 25:293.

    Google Scholar 

  • Yuan ZY, Chen HY. 2009. Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Global Ecology and Biogeography 18:11–18.

    Article  Google Scholar 

  • Zhang D, Hui D, Luo Y, Zhou G. 2008. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology 1:85–93.

    Article  Google Scholar 

  • Zhang L, Mi X, Shao H, Ma K. 2011. Strong plant-soil associations in a heterogeneous subtropical broad-leaved forest. Plant and Soil 347:211–220.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (31500356) and Natural Science Foundation of Gansu Province of China (21JR7RA483). The authors thank Pengpeng Dou, Fang Wang and Mei Pang for the laboratory and field assistance and Laurent Augusto and Nicolas Fanin for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunmei Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Author Contribution RM and DL designed the experiment; RM and XW collected the data in France, DL and LZ collected the data in China; XW analyzed the data and wrote the manuscript; RM and DL contributed to revising the manuscript; all authors gave final approval for publication.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 246 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Lin, D., Zhao, L. et al. The Relative Importance of Coarse-Scale Climate and Fine-Scale Nitrogen Availability Contrasts in Driving Home-Field Advantage Effects in Litter Decomposition. Ecosystems 26, 1456–1467 (2023). https://doi.org/10.1007/s10021-023-00844-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-023-00844-2

Keywords

Navigation