Skip to main content
Log in

The numerical methods for the coupled fluid flow under the leak interface condition of the friction-type

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The friction-type (or called barrier-type) leak interface condition (FLIC) is proposed to model the viscous fluid through a perforated membrane with a threshold permeability, where the flow passes through the perforations only when the stress difference on the membrane is above a threshold. This work establishes a comprehensive study on several numerical approaches for the Stokes/Stokes coupled flow under the FLIC, including the projection, regularization (or called penalty), and domain decomposition methods. In the continuous sense, first, we revisit the well-posedness, introduce the Lagrange multiplier formulation, and show the convergence of the projection method, i.e., the Uzawa algorithm. Second, we approximate the variational inequality by the regularization technique. We derive the approximation error and discuss the applicability of the Picard iteration to the nonlinear regularization problem. And third, a domain decomposition algorithm is proposed to decouple the system into two Stokes problems with the Dirichlet and friction-type leak boundary conditions on \(\Gamma \), respectively. In the discrete sense, we apply the finite element method with P1b/P1-element and enforce the interface condition by mass-lumping technique. We obtain the error estimates of the finite element approximation. The convergence of the discrete version of the projection methods (including the Uzawa and Active/Inactive set algorithms), the regularization problem, and the domain decomposition algorithm are investigated as with the continuous cases. We carry out several numerical experiments to confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Almonacid, J.A., Diaz, H.S., Gatica, G.N., Márquez, A.: A fully mixed finite element method for the coupling of the Stokes and Darcy–Forchheimer problems. IMA J. Numer. Anal. 40(2), 1454–1502 (2020)

    MathSciNet  MATH  Google Scholar 

  2. Angotm, P.: Well-posed Stokes/Brinkman and Stokes/Darcy problems for coupled fluid-porous viscous flows. ESAIM: M2AN 52, 1875–1911 (2018)

    Google Scholar 

  3. Ayadi, M., Cdoura, M.K., Sassi, T.: Mixed formulation for stokes problem with Tresca friction. C. R. Math. Acad. Sci. Paris 348, 1069–1072 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Google Scholar 

  5. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, Berlin (2007)

    Google Scholar 

  6. Burman, E., Hansbo, P.: A unified stabized method for Stokes’s and Darcy’s equations. J. Comput. Appl. Math. 198, 35–51 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Cao, Y., Gunzburger, M., He, X., Wang, X.: Robin-Robin domain decomposition methods for the steady-state Stokes–Darcy system with the Beavers–Joseph interface condition. Numer. Math. 117, 601–629 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Conca, C.: Étude d’un fluide traversant une paroi perforeé. I. Comportement limite près de la paroi. J. Math. Pures Appl. 66, 1–43 (1987)

    MathSciNet  MATH  Google Scholar 

  9. Conca, C.: The Stokes sieve problem. Commun. Appl. Numer. Methods 4, 113–121 (1988)

    MATH  Google Scholar 

  10. Connors, J., Howell, J.S., Layton, W.J.: Decoupled time stepping methods for fluid-fluid interaction. SIAM J. Numer. Anal. 50(3), 1297–1319 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Discacciati, M., Quarteroni, A., Valli, A.: Robin-Robin domain decomposition methods for the Stokes–Darcy coupling. SIAM J. Numer. Anal. 45(3), 1246–1268 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Fu, G., Lehrenfeld, C.: A strongly conservative hybrid DG/Mixed FEM for the coupling Stokes and Darcy flow. J. Sci. Comput. 77, 1605–1620 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Fujita, H.: A mathematical analysis of motions of viscous incompressible fluid under leak or slip boundary conditions. Res. Inst. Math. Sci. Kokyuroku 888, 199–216 (1994)

    MathSciNet  MATH  Google Scholar 

  14. Fujita, H.: Non-stationary stokes flows under leak boundary conditions of friction type. J. Comput. Math. 19(1), 1–18 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Fujita, H.: A coherent analysis of stokes flows under boundary conditions of friction type. J. Comput. Appl. Math. 149, 56–79 (2002)

    MathSciNet  Google Scholar 

  16. Fujita, H.: Remarks on the stokes flow under slip and leak boundary conditions of friction type. In: Galdi, G., Rannacher, R. (eds.) Topics in Mathematical Fluid Mechanics, pp. 73–94 (2002)

  17. Fujita, H., Kawarada, H., Sasamoto, A.: Analytical and numerical approaches to stationary flow problems with leak and slip boundary conditions. Lect. Notes Numer. Appl. Anal. 14, 17–31 (1995)

    MathSciNet  MATH  Google Scholar 

  18. Gatica, G.N., Oyarzúa, R., Sayas, F.-J.: Analysis of fully-mixed finite element methods for the Stokes–Darcy coupled problem. Math. Comput. 80, 1911–1948 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Gatica, G.N., Sequeira, F.A.: Analysis of the HDG method for the Stokes–Darcy coupling. Numer. Methods Partial Differ. Equ. 33, 885–917 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Girault, V., Raviart, O.-A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer, Berlin (1986)

    MATH  Google Scholar 

  21. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, Berlin (1984)

    MATH  Google Scholar 

  22. Hintermüller, M., Kovtunenko, V.A., Kunish, K.: The primal-dual active set method for a crack problem with non-penetration. IMA J. Appl. Math. 69, 1–26 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Kashiwabara, T.: Finite element method for Stokes equations under leak boundary condition of friction type. SIAM J. Numer. Anal. 51(4), 2448–2469 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Kashiwabara, T.: On a finite element approximation of the Stokes equations under a slip boundary condition of the friction type. Jpn. J. Ind. Appl. Math. 30, 227–261 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Kashiwabara, T.: On a strong solution of the non-stationary Navier-Stokes equations under slip or leak boundary conditions of friction type. J. Differ. Equ. 254(2), 756–778 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Kawarada, H., Fujita, H., Suito, H.: Wave motion breaking upon the shore. GAKUTO Int. Ser. Math. Sci. Appl. 11, 145–159 (1998)

    MathSciNet  MATH  Google Scholar 

  27. Kikuchi, N., Oden, J.T.: Contact problems in elasticity: a study of variational inequalities and finite element methods, volume SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1988)

  28. Layton, W., Tran, H., Trenchea, C.: Analysis of long time stability and errors of two partitioned methods for uncoupling evolutionary groundwater-surface water flows. SIAM J. Numer. Anal. 51, 248–272 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40(6), 2195–2218 (2003)

    MathSciNet  MATH  Google Scholar 

  30. Li, J., Huang, P., Zhang, C., Guo, G.: A linear, decoupled fractional time-stepping method for the nonlinear fluid–fluid interaction. Numer. Methods Partial Differ. Equ. 35(5), 1873–1889 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Li, Y., An, R.: Semi-discrete stabilized finite element methods for Navier-Stokes equations with nonlinear slip boundary conditions based on regularization procedure. Numer. Math. 117, 1–36 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Li, Y., An, R.: Two-level pressure projection finite element methods for Navier–Stokes equations with nonlinear slip boundary conditions. Appl. Numer. Math. 11, 285–297 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Li, Y., Li, K.: Penalty finite element method for Stokes problem with nonlinear slip boundary conditions. Appl. Math. Comput. 204, 216–226 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  35. Lions, J.L., Temam, R., Wang, S.: Models for the coupled atmosphere and ocean (CAO I). Comput. Mech. Adv. 1, 1–54 (1993)

    MathSciNet  MATH  Google Scholar 

  36. Lions, J.L., Temam, R., Wang, S.: Mathematical theory for the coupled atmosphere-ocean models (CAO III). J. Math. Pures. Appl. 74, 105–163 (1995)

    MathSciNet  MATH  Google Scholar 

  37. Mardal, K.A., Tai, X.-C., Winther, R.: A robust finite element method for Darcy–Stokes flow. SIAM J. Numer. Anal. 40, 1605–1631 (2002)

    MathSciNet  MATH  Google Scholar 

  38. Maris, F., Vernescu, B.: Effective leak conditions across a membrane. Complex Var. Elliptic Equ. 57(2–4), 437–453 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Márquez, A., Meddahi, S., Sayas, F.-J.: Strong coupling of finite element methods for the Stokes–Darcy problem. IMA J. Numer. Anal. 35, 969–988 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Ochoa-Tapia, J.A., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid I: theoretical development. Int. J. Heat Mass Transf. 38, 2635–2646 (1995)

    MATH  Google Scholar 

  41. Rivière, B.: Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems. J. Sci. Comput. 22, 479–500 (2005)

    MathSciNet  MATH  Google Scholar 

  42. Rui, H., Zhang, R.: A unified stabilized mixed finite element method for coupling Stokes and Darcy flow. Comput. Methods. Appl. Mech. Eng. 198, 2692–2699 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Saffman, P.G.: On the boundary condition at the surface of a porous medium. Stud. Appl. Math. L50, 93–101 (1971)

    MATH  Google Scholar 

  44. Saito, N.: On the stokes equations with leak and slip boundary conditions of friction type regularity of solutions. Publ. RIMS Kyoto Univ. 40(2), 345–383 (2004)

    MathSciNet  MATH  Google Scholar 

  45. Song, P., Wang, C., Yotov, I.: Domain decomposition for Stokes–Darcy flows with curved interfaces. Procedia Comput. Sci. 18, 1077–1086 (2013)

    Google Scholar 

  46. Suito, H., Kawarada, H.: Numerical simulation of spilled oil by fictitious domain method. Jpn. J. Ind. Appl. Math. 21, 219–236 (2004)

    MathSciNet  MATH  Google Scholar 

  47. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1984)

    MATH  Google Scholar 

  48. Zhang, Y., Hou, Y., Shan, L.: Stability and convergence analysis of a decoupled algorithm for a fluid–fluid interaction problem. SIAM J. Numer. Anal. 54(5), 2833–2867 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Zhang, Y., Zheng, H., Hou, Y., Shan, L.: Optimal error estimates of both coupled and two-grid decoupled methods for a mixed Stokes–Stokes model. Appl. Numer. Math. 133, 116–129 (2018)

    MathSciNet  MATH  Google Scholar 

  50. Zhou, G., Kashiwabara, T., Oikawa, I., Chung, E., Shiue, M.-C.: An analysis on the penalty and Nitsche’s methods for the Stokes–Darcy system with a curved interface. Appl. Numer. Math. 165, 83–118 (2021)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feifei Jing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of Guanyu Zhou was supported by the National Natural Science Foundation of China (No. 12171071 and No. 12071061) and the Central Guidance on Local Science and Technology Development Fund of Sichuan Province (2021ZYD0002). The research of Feifei Jing is supported by the National Natural Science Foundation of China (No. 12001413 and No. 12171415) and the Postdoctoral Science Foundation of China (No. 2021M692647). The research of Takahito Kashiwabara was supported by JSPS Grant-in-Aid for Early-Career Scientists (No. 20K14357).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Jing, F. & Kashiwabara, T. The numerical methods for the coupled fluid flow under the leak interface condition of the friction-type. Numer. Math. 153, 729–773 (2023). https://doi.org/10.1007/s00211-023-01348-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-023-01348-w

Mathematics Subject Classification

Navigation