Skip to main content
Log in

Isosceles Tetrahedron and an Equimomental System of a Rigid Body

  • MECHANICS
  • Published:
Vestnik St. Petersburg University, Mathematics Aims and scope Submit manuscript

Abstract

The problem of equimomental systems of a rigid body is considered. It is shown that the system of four equal masses located at the vertices of an isosceles tetrahedron is equimomental to a given rigid body. A system of material points of equal masses located at the vertices of an isosceles tetrahedron, which is equimomental to the nucleus of the 67P Churyumov—Gerasimenko comet, is constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. E. J. Routh, The Elementary Part of a Treatise on the Dynamics of a System of Rigid Bodies: Being Part I. Of a Treatise on the Whole Subject (Macmillan, London, 1882).

    Google Scholar 

  2. W. L. Loudon, An Elementary Treatise on Rigid Dynamics (Macmillan, New York, 1896).

    MATH  Google Scholar 

  3. Ph. Franklin, “Equimomental systems,” Stud. Appl. Math. 8 (1–4), 129–140 (1929).

    MATH  Google Scholar 

  4. D. M. Y. Sommerville, “Equimomental tetrads of a rigid body,” Math. Notes 26, 10–11 (1930). https://doi.org/10.1017/S1757748900002127

    Article  MATH  Google Scholar 

  5. A. Talbot, “Equimomental systems,” Math. Gaz. 36, 95–110 (1952). https://doi.org/10.2307/3610326

    Article  MathSciNet  MATH  Google Scholar 

  6. N. C. Huang, “Equimomental system of rigidly connected equal particles,” J. Guid., Control, Dyn. 16, 1194–1196 (1993). https://doi.org/10.2514/3.21150

    Article  Google Scholar 

  7. F. J. Gil Chica, M. Pérez Polo, and M. Pérez Molina, “Note on an apparently forgotten theorem about solid rigid dynamics,” Eur. J. Phys. 35, 045003 (2014). https://doi.org/10.1088/0143-0807/35/4/045003

    Article  MATH  Google Scholar 

  8. L. P. Laus and J. M. Selig, “Rigid body dynamics using equimomental systems of point-masses,” Acta Mech. 231, 221–236 (2020). https://doi.org/10.1007/s00707-019-02543-3

    Article  MathSciNet  MATH  Google Scholar 

  9. J. M. Selig, Geometric Fundamentals of Robotics, 2nd ed. (Springer-Verlag, Berlin, 2005).

    MATH  Google Scholar 

  10. J. M. Selig, “Equimomental systems and robot dynamics,” in Proc. IMA Mathematics of Robotics, Sept. 9–11, Oxford, 2015 (2015).

  11. L. P. Laus and J. M. Selig, “Rigid body dynamics using equimomental systems of point-masses,” Acta Mech. 231, 221–236 (2020). https://doi.org/10.1007/s00707-019-02543-3

    Article  MathSciNet  MATH  Google Scholar 

  12. I. F. Sharygin, Problems in Solid Geometry (Science for Everyone) (Nauka, Moscow, 1984; Mir, Moscow, 1986).

  13. Ya. P. Ponarin, Elementary Geometry, Vol. 2: Stereometry, Space Transformations (MTsNMO, Moscow, 2006) [in Russian].

  14. E. A. Nikonova, “On stationary motions of an isosceles tetrahedron with a fixed point in the central force field,” Prikl. Mat. Mekh. 86, 153–168 (2022). https://doi.org/10.31857/S0032823522020096

    Article  MATH  Google Scholar 

  15. A. A. Burov and E. A. Nikonova, “The generating function for the components of the Euler–Poinsot tensor,” Dokl. Phys. 66, 139–142 (2021). https://doi.org/10.1134/S1028335821050037

    Article  Google Scholar 

  16. A. R. Dobrovolskis, “Inertia of any polyhedron,” Icarus 124, 698–704 (1996). https://doi.org/10.1006/icar.1996.0243

    Article  Google Scholar 

  17. G. N. Duboshin, Celestial Mechanics. Fundamental Problems and Methods (Nauka, Moscow, 1968) [in Russian].

    MATH  Google Scholar 

  18. L. Meirovitch, Methods of Analytical Dynamics (McGraw-Hill, New York, 1970).

    MATH  Google Scholar 

  19. Yu. A. Arkhangel’skii, Analytical Dynamics of a Rigid Body (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  20. L. Meirovitch, “On the effects of higher-order inertia integrals on the attitude stability of Earth-pointing satellites,” J. Astronaut. Sci. 15 (1), 14–18 (1968).

    Google Scholar 

  21. P. C. Sulikashvili, “The effect of third- and fourth-order moments of inertia on the motion of a solid,” J. Appl. Math. Mech. 51, 208–212 (1987). https://doi.org/10.1016/0021-8928(87)90066-9

    Article  MATH  Google Scholar 

  22. R. S. Sulikashvili, “On the stationary motions in a Newtonian field of force of a body that admits of regular polyhedron symmetry groups,” J. Appl. Math. Mech. 53, 452–456 (1989). https://doi.org/10.1016/0021-8928(89)90051-8

    Article  MathSciNet  MATH  Google Scholar 

  23. K. R. Koch and F. A. Morrison, “Simple layer model of the geopotential from a combination of satellite and gravity data,” J. Geophys. Res. 75, 1483–1492 (1970). https://doi.org/10.1029/JB075i008p01483

    Article  Google Scholar 

  24. H. J. Melosh, “Mascons and the Moon’s orientation,” Earth Planet. Sci. Lett. 25, 322–326 (1975). https://doi.org/10.1016/0012-821X(75)90248-4

    Article  Google Scholar 

  25. T. G. G. Chanut, S. Aljbaae, and V. Carruba, “Mascon gravitation model using a shaped polyhedral source,” Mon. Not. R. Astron. Soc. 450, 3742–3749 (2015). https://doi.org/10.1093/mnras/stv845

    Article  Google Scholar 

  26. P. T. Wittick and R. P. Russell, “Mascon models for small body gravity fields,” in Astrodynamics 2017: Proc. AAS/AIAA Astrodynamics Specialist Conf., Stevenson, Wash., Aug. 20–24, 2017 (Univelt, San Diego, Calif., 2018), in Ser.: Advances in Astronautical Sciences, Vol. 162, pp. 2003–2020.

  27. R. Gaskell, L. Jorda, C. Capanna, S. Hviid, and P. Gutierrez, SPC SHAP5 Cartesian Plate Model for Comet 67P/C-G 6K PLATES, RO-C-MULTI-5-67P-SHAPEV2.0:CG_SPC_SHAP5_006K_CART, NASA Planetary Data System and ESA Planetary Science Archive (2017).

  28. A. A. Burov and V. I. Nikonov, “Computation of attraction potential of asteroid (433) Eros with an accuracy up to the terms of the fourth order,” Dokl. Phys. 65, 164–168 (2020). https://doi.org/10.1134/S1028335820050080

    Article  Google Scholar 

  29. A. A. Burov and V. I. Nikonov, “Sensitivity of the Euler–Poinsot tensor values to the choice of the body surface triangulation mesh,” Comput. Math. Math. Phys. 60, 1708–1720 (2020). https://doi.org/10.1134/S0965542520100061

    Article  MathSciNet  MATH  Google Scholar 

  30. A. A. Burov and V. I. Nikonov, “Inertial characteristics of higher orders and dynamics in a proximity of a small celestial body,” Nelineinaya Din. 16, 259–273 (2020). https://doi.org/10.20537/nd200203

    Article  MathSciNet  MATH  Google Scholar 

  31. A. A. Burov, A. D. Guerman, E. A. Nikonova, and V. I. Nikonov, “Approximation for attraction field of irregular celestial bodies using four massive points,” Acta Astronaut. 157, 225–232 (2019). https://doi.org/10.1016/j.actaastro.2018.11.030

    Article  Google Scholar 

  32. A. A. Burov, A. D. German, and V. I. Nikonov, “Using the K-means method for aggregating the masses of elongated celestial bodies,” Cosmic Res. 57, 266– 271 (2019). https://doi.org/10.1134/S0010952519040026

    Article  Google Scholar 

  33. A. A. Burov, A. D. German, E. A. Raspopova, and V. I. Nikonov, “On the use of the K-means algorithm for determination of mass distributions in dumbbell-like celestial bodies,” Nelineinaya Din. 14, 45–52 (2018). https://doi.org/10.20537/nd1801004

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Lages, I. I. Shevchenko, and G. Rollin, “Chaotic dynamics around cometary nuclei,” Icarus 307, 391–399 (2018). https://doi.org/10.1016/j.icarus.2017.10.035

    Article  Google Scholar 

  35. J. Lages, D. L. Shepelyansky, and I. I. Shevchenko, “Chaotic zones around rotating small bodies,” Astron. J. 153, 272 (2017). https://doi.org/10.3847/1538-3881/aa7203

    Article  Google Scholar 

  36. S. A. Stern, H. A. Weaver, J. R. Spencer, C. B. Olkin, G. R. Gladstone, W. M. Grundy, J. M. Moore, D. P. Cruikshank, H. A. Elliott, W. B. McKinnon, J. W. Parker, A. J. Verbiscer, L. A. Young, D. A. Aguilar, J. M. Albers, T. Andert, J. P. Andrews, F. Bagenal, M. E. Banks, B. A. Bauer, J. A. Bauman, K. E. Bechtold, C. B. Beddingfield, N. Behrooz, K. B. Beisser, S. D. Benecchi, E. Bernardoni, R. A. Beyer, S. Bhaskaran, C. J. Bierson, R. P. Binzel, E. M. Birath, M. K. Bird, D. R. Boone, A. F. Bowman, V. J. Bray, D. T. Britt, E. L. Brown, M. R. Buckley, M. W. Buie, B. J. Buratti, L. M. Burke, S. S. Bushman, B. S. Carcich, A. L. Chaikin, C. L. Chavez, A. F. Cheng, E. J. Colwell, S. J. Conard, M. P. Conner, C. A. Conrad, J. C. Cook, S. B. Cooper, O. S. Custodio, C. M. Dalle Ore, C. C. Deboy, P. Dharmavaram, R. D. Dhingra, G. F. Dunn, A. M. Earle, A. F. Egan, J. Eisig, M. R. El-Maarry, C. Engelbrecht, Enke1 B. L., C. J. Ercol, E. D. Fattig, C. L. Ferrell, T. J. Finley, J. Firer, J. Fischetti, W. M. Folkner, M. N. Fosbury, G. H. Fountain, J. M. Freeze, L. Gabasova, L. S. Glaze, J. L. Green, G. A. Griffith, Y. Guo, M. Hahn, D. W. Hals, D. P. Hamilton, S. A. Hamilton, J. J. Hanley, A. Harch, K. A. Harmon, H. M. Hart, J. Hayes, C. B. Hersman, M. E. Hill, T. A. Hill, J. D. Hofgartner, M. E. Holdridge, M. Horányi, A. Hosadurga, A. D. Howard, C. J. A. Howett, S. E. Jaskulek, D. E. Jennings, J. R. Jensen, M. R. Jones, H. K. Kang, D. J. Katz, D. E. Kaufmann, J. J. Kavelaars, J. T. Keane, G. P. Keleher, M. Kinczyk, M. C. Kochte, P. Kollmann, S. M. Krimigis, G. L. Kruizinga, D. Y. Kusnierkiewicz, M. S. Lahr, T. R. Lauer, G. B. Lawrence, J. E. Lee, E. J. Lessac-Chenen, I. R. Linscott, C. M. Lisse, A. W. Lunsford, D. M. Mages, V. A. Mallder, N. P. Martin, B. H. May, D. J. McComas, R. L. McNutt, Jr., D. S. Mehoke, T. S. Mehoke, D. S. Nelson, H. D. Nguyen, J. I. N´u˜nez, A. C. Ocampo, W. M. Owen, G. K. Oxton, A. H. Parker, M. Pätzold, J. Y. Pelgrift, F. J. Pelletier, J. P. Pineau, M. R. Piquette, S. B. Porter, S. Protopapa, E. Quirico, J. A. Redfern, A. L. Regiec, H. J. Reitsema, D. C. Reuter, D. C. Richardson, J. E. Riedel, M. A. Ritterbush, S. J. Robbins, D. J. Rodgers, G. D. Rogers, D. M. Rose, P. E. Rosendall, K. D. Runyon, M. G. Ryschkewitsch, M. M. Saina, M. J. Salinas, P. M. Schenk, J. R. Scherrer, W. R. Schlei, B. Schmitt, D. J. Schultz, D. C. Schurr, F. Scipioni, R. L. Sepan, R. G. Shelton, M. R. Showalter, M. Simon, K. N. Singer, E. W. Stahlheber, D. R. Stanbridge, J. A. Stansberry, A. J. Steffl, D. F. Strobel, M. M. Stothoff, T. Stryk, J. R. Stuart, M. E. Summers, M. B. Tapley, A. Taylor, H. W. Taylor, R. M. Tedford, H. B. Throop, L. S. Turner, O. M. Umurhan, J. Van Eck, D. Velez, M. H. Versteeg, M. A. Vincent, R. W. Webbert, S. E. Weidner, G. E. Weigle, J. R. Wendel, O. L. White, K. E. Whittenburg, B. G. Williams, K. E. Williams, S. P. Williams, H. L. Winters, A. M. Zangari, and T. H. Zurbuchen, “Initial results from the New Horizons exploration of 2014 MU69, a small Kuiper Belt object,” Science 364, eaaw9771 (2019). https://doi.org/10.1126/science.aaw9771

  37. G. Rollin, I. I. Shevchenko, and J. Lages, “Dynamical environments of MU69 and similar objects,” Icarus 357, 114178 (2021). https://doi.org/10.1016/j.icarus.2020.114178

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Nikonova.

Additional information

Translated by E. Seifina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikonova, E.A. Isosceles Tetrahedron and an Equimomental System of a Rigid Body. Vestnik St.Petersb. Univ.Math. 56, 119–124 (2023). https://doi.org/10.1134/S1063454123010107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063454123010107

Keywords:

Navigation