Skip to main content
Log in

Oscillator death in coupled biochemical oscillators

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

Circadian rhythm, cell division and metabolic oscillations are rhythmic cellular behaviors that must be both robust but also to respond to changes in their environment. In this work, we study emergent behavior of coupled biochemical oscillators, modeled as repressilators. While more traditional approaches to oscillators synchronization often use phase oscillators, our approach uses switching systems that may be more appropriate for cellular networks dynamics governed by biochemical switches. We show that while one-directional coupling maintains stable oscillation of individual repressilators, there are well-characterized parameter regimes of mutually coupled repressilators, where oscillations stop. In other parameter regimes, joint oscillations continue. Our results may have implications for the understanding of condition-dependent coupling and un-coupling of regulatory networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Albert R, Collins JJ, Glass L (2013) Introduction to focus issue: quantitative approaches to genetic networks. Chaos 23(2):025001

    Article  MathSciNet  MATH  Google Scholar 

  2. Almeida S, Chaves M, Delaunay F (2020) Control of synchronization ratios in clock/cell cycle coupling by growth factors and glucocorticoids. R Soc Open Sci 7:192054

    Article  Google Scholar 

  3. Almeida S, Chaves M, Delaunay F (2020) Transcription-based circadian mechanism controls the duration of molecular clock states in response to signaling inputs. J Theor Biol 484:110015

    Article  MATH  Google Scholar 

  4. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8:450–461

    Article  Google Scholar 

  5. Atay O, Doncic A, Skotheim JM (2016) Switch-like transitions can modularize complex biological networks. Cell Syst 3(2):121–132

    Article  Google Scholar 

  6. Bieler J, Cannavo R, Gustafson K, Gobet C, Gatfield D, Naef F (2014) Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells. Mol Syst Biol 10(7):739

    Article  Google Scholar 

  7. Boccaletti S, Pisarchik AN, del Genio CI (2018) Synchronization: from coupled systems to complex networks. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  8. Burckard O, Teboul M, Delaunay F, Chaves M (2022) Cycle dynamics and synchronization in a coupled network of peripheral circadian clocks. Interface Focus 20210087

  9. Collins JJ, Stewart IN (1992) Symmetry-breaking bifurcation: a possible mechanism for 2:1 frequency-locking in animal locomotion. J Math Biol 30(8):827–838

    Article  MathSciNet  MATH  Google Scholar 

  10. Collins JJ, Stewart IN (1993) Coupled nonlinear oscillators and the symmetries of animal gaits. J Nonlinear Sci 3:349–392

    Article  MathSciNet  MATH  Google Scholar 

  11. Cummins B, Gedeon T, Harker S, Mischaikow K (2017) Database of dynamic signatures generated by regulatory networks (DSGRN). In: Feret J, Koeppl H (eds) Computational methods in systems biology, 2017, chapter 19. Springer, Berlin, pp 300–308

    Chapter  Google Scholar 

  12. Cummins B, Gedeon T, Harker S, Mischaikow K (2018) DSGRN: examining the dynamics of families of logical models. Front Physiol 9

  13. Cummins B, Gedeon T, Harker S, Mischaikow K (2018) Model rejection and parameter reduction via time series. SIAM J Appl Dyn Syst 17(2):1589–1616

    Article  MathSciNet  MATH  Google Scholar 

  14. Cummins B, Gedeon T, Harker S, Mischaikow K, Mok K (2016) Combinatorial representation of parameter space for switching systems. SIAM J Appl Dyn Syst 15(4):2176–2212

    Article  MathSciNet  MATH  Google Scholar 

  15. de Jong H, Gouze JL, Hernandez C, Page M, Sari T, Geiselmann J (2004) Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bull Math Biol 66(2):301–40

    Article  MathSciNet  MATH  Google Scholar 

  16. Edwards R (2001) Chaos in neural and gene networks with hard switching. Differ Equ Dyn Syst 9:187–220

    MathSciNet  MATH  Google Scholar 

  17. Epstein IR, Pojman JA (1998) An introduction to nonlinear chemical dynamics: oscillations, waves, patterns, and chaos. University Press, Oxford

    Book  Google Scholar 

  18. Ermentrout B, Kopell N (1990) Oscillator death in systems of coupled neural oscillators. SIAM J Appl Math 50(1):125–146

    Article  MathSciNet  MATH  Google Scholar 

  19. Feillet C, van der Horst GT, Levi F, Ran DA, Delaunay F (2015) Coupling between the circadian clock and cell cycle oscillators: implication for healthy cells and malignant growth. Front Neurol 6(96)

  20. Feillet Céline, Krusche Peter, Tamanini Filippo, Janssens Roel C, Downey Mike J, Martin Patrick, Teboul Michèle, Saito Shoko, Lévi Francis A, Bretschneider Till, van der Horst Gijsbertus T J, Delaunay Franck, Rand David A (2014) Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle. Proc Natl Acad Sci USA 111(27):9828–9833

    Article  Google Scholar 

  21. Forger D, Peskin C (2003) A detailed predictive model of the mammalian circadian clock. Proc Natl Acad Sci USA 100(25):14806–148112003

    Article  Google Scholar 

  22. Gedeon T (1998) Cyclic Feedback Systems, volume 637 of Memoirs of AMS. American Mathematical Soc, Providence

    Google Scholar 

  23. Gedeon T (2000) Multi-parameter exploration of dynamics of regulatory networks. Biosystems 190:104113

    Article  Google Scholar 

  24. Gedeon T, Cummins B, Harker S, Mischaikow K (2018) Identifying robust hysteresis in networks. PLoS Comput Biol 14(4):e1006121

    Article  Google Scholar 

  25. Glass L, Kauffman S (1972) Co-operative components, spatial localization and oscillatory cellular dynamics. J Theor Biol 34(2):219–37

    Article  Google Scholar 

  26. Goldbetter A, Yan J (2021) Multi-synchonization and other patterns of multi-rhythmicity in oscillatory dynamical systems. Interface Focus 12:20210089

    Article  Google Scholar 

  27. Harker S. dsgrn software

  28. Hastings S, Tyson J, Webster D (1977) Existence of periodic solutions for negative feedback cellular control systems. J Differ Equ 25:39–64

    Article  MathSciNet  MATH  Google Scholar 

  29. Ironi L, Panzeri L, Plahte E, Simoncini V (2011) Dynamics of actively regulated gene networks. Physica D 240(8):779–794

    Article  MathSciNet  MATH  Google Scholar 

  30. Kuramoto Y (1984) Chemical oscillations, waves and turbulence. Springer, Berlin

    Book  MATH  Google Scholar 

  31. Pikovsky A, Rosenblum MG, Kurths J (2001) Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  32. Smith LM, Motta FC, Chopra G, Moch JK, Nerem RR, Cummins B, Roche KE, Kelliher CM, Leman AR, Harer J, Gedeon T, Waters NC, Haase SB (2020) An intrinsic oscillator drives the blood stage cycle of the malaria parasite. Science 368:754–759

    Article  Google Scholar 

  33. Snoussi H, Thomas R (1993) Qualitative dynamics of piecewise-linear differential equations: a discrete mapping approach. Bull Math Biol 55(5):973–991

    Article  MATH  Google Scholar 

  34. Sontag E (2002) Asymptotic amplitudes and Cauchy gains: a small-gain principle and an application to inhibitory biological feedback. Syst Control Lett 47:167–179

    Article  MathSciNet  MATH  Google Scholar 

  35. Stewart Ian, Golubitsky Martin, Pivato Marcus (2003) Symmetry groupoids and patterns of synchrony in coupled cell networks. SIAM J Appl Dyn Syst 2(4):609–646

    Article  MathSciNet  MATH  Google Scholar 

  36. Strogatz S (2012) Sync: how order emerges from chaos in the universe, nature and daily life. Hyperion, New York

    Google Scholar 

  37. Strogatz Steven H, Mirollo Renato E (1991) Stability of incoherence in a population of coupled oscillators. J Stat Phys 63(3):613–635

    Article  MathSciNet  Google Scholar 

  38. Tyson JJ, Othmer HG (1978) The dynamics of feedback control circuits in biochemical pathways. Prog Theor Biol 5:1–62

    MATH  Google Scholar 

  39. Winfree AT (1980) The geometry of biological time. Springer, New York

    Book  MATH  Google Scholar 

  40. Yan J, Goldbeter A (2019) Robust synchronization of the cell cycle and the circadian clock through bidirectional coupling. J R Soc Interface 16:20190376

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Indigenous nations and peoples who are the traditional owners and caretakers of the land on which this work was undertaken at the Montana State University.

Funding

This research was partially supported by NSF Grant DMS-1839299 and NIH Grant 5R01GM126555-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Gedeon.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is dedicated to Eduardo Sontag on the occasion of his 70th birthday.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gedeon, T., Cummins, B. Oscillator death in coupled biochemical oscillators. Math. Control Signals Syst. 35, 781–801 (2023). https://doi.org/10.1007/s00498-023-00348-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-023-00348-3

Keywords

Navigation