Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) April 24, 2023

Incorporation of Pb in (Al,Ge)-mullites in the presence of Fe, Cr, Nd, and Sm

  • Samuel Abdelmaseh , Manfred Burianek , Johannes Birkenstock , Lennart A. Fischer , Hartmut Schneider and Reinhard X. Fischer EMAIL logo

Abstract

Single crystals of five (Al,Ge)-mullites incorporating Pb, and four of which also incorporating foreign cations (Fe,Cr,Nd,Sm) were grown by flux techniques in a PbO-MoO3 flux. They were characterized by scanning electron microscopy, electron microprobe analyses, single-crystal X-ray diffraction. In addition, the refractive indices of mullite containing Nd were determined by spindle-stage optical investigations. Careful inspection of the single-crystal X-ray diffraction data revealed that weak superstructure reflections observed in all doped crystals violating the reflection conditions can be attributed to λ/2 contributions in the primary X-ray beam. Consequently, all crystal structures were refined in space group Pbam, thus avoiding a symmetry lowering to a noncentrosymmetric subgroup as done in earlier work on a (Al,Ge)-mullite doped with Pb and Nd (Saalfeld & Klaska, Z. Kristallogr. 1985, 172, 129–133). The following phases with chemical compositions used in the refinements were obtained: undoped mullite (Al4.50Ge1.50O9.75; a = 7.6559(4) Å, b = 7.7763(4) Å, c = 2.9233(2) Å, V = 174.04(2) Å3); (Pb,Fe)-doped mullite (Pb0.02Fe0.68Al3.95Ge1.37O9.70; a = 7.7125(7) Å, b = 7.8527(7) Å, c = 2.9528(2) Å, V = 178.83(3) Å3); (Pb,Cr)-doped mullite (Pb0.01Cr0.63Al3.90Ge1.47O9.75; a = 7.6917(6) Å, b = 7.8168(6) Å, c = 2.9522(2) Å, V = 177.50(2) Å3); (Pb,Nd)-doped mullite (Pb0.06Nd0.02Al4.82Ge1.18O9.69; a = 7.6585(7) Å, b = 7.7666(7) Å, c = 2.9164(3) Å, V = 173.47(3) Å3); (Pb,Sm)-doped mullite (Pb0.06Sm0.02Al4.55Ge1.45O9.79; a = 7.6563(3) Å, b = 7.7873(3) Å, c = 2.9236(1) Å, V = 174.31(1) Å3); Pb is only incorporated into the crystal structure when a co-dopant element is present. Then it resides together with Nd or Sm in the oxygen-vacancy sites created by the formation of triclusters of AlO4 and GeO4 tetrahedra. In the case of (Pb,Fe)-doped mullite, Fe shares the same position as Al and Ge. In contrast to the (Al,Si)-mullites, Ge is located in both tetrahedral sites T and T*. The occupancies follow a substitution scheme according to Pb q (Nd,Sm) r (Cr,Fe) z Al4+2vzGe2−2vO10−v+q+3/2r. With v = number of vacancies, such a mullite can be understood as a “stuffed mullite” derived from a related “open mullite” (no vacancies filled with large cations) of composition (Cr,Fe) z Al4+2vzGe2−2vO10−v and then “stuffed” with qPb2+ + r(Nd3+,Sm3+) formula units where concurrently the number of available O3-vacancies is reduced by q + 3/2r units of extra oxygen. Thus, charge compensation upon incorporation of Pb2+ and (Nd,Sm)3+ is achieved by adding the amount of oxygen corresponding to the oxidation state of divalent Pb2+ and trivalent rare-earth elements. Based on this description, the maximum number of large cations which can be stuffed into the mullite structure can directly be calculated from the v-value of the related “open mullite”. In contrast, the smaller cations Fe3+ and Cr3+ are directly substituting Al3+. In the stuffed mullites, Pb and (Nd,Sm) could not be distinguished and were refined with a mixed occupancy on the same site. In addition to structure analysis, refractive indices of (Pb,Nd)-mullite were determined by immersion methods using a micro-refractometer spindle stage yielding n x = 1.697(3), n y = 1.708(3), and n z = 1.710(3) and 2V z = 122(4)°. The mean refractive index corresponds closely to the corresponding parameter calculated from the chemical composition whereas it would be significantly off if the extra cations were ignored, thus representing an independent evidence for the incorporation of Pb and Nd into the crystal structure.


Corresponding author: Reinhard X. Fischer, Universität Bremen, FB 5 Geowissenschaften, Klagenfurter Str. 2, D-28359 Bremen, Germany, E-mail:

Acknowledgments

We thank Anne Hübner for the EMPA sample preparation, and Christian Lengauer and an anonymous reviewer for their comments improving the manuscript.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: We thank the Deutsche Forschungsgemeinschaft (DFG) for funding this project under grant FI442/25-1.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

  4. Deposited data: CCDC–CSD 2182527–2182531 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

References

1. Bowen, N. L., Greig, J. W., Zies, E. G. The system Al2O3.SiO2. J. Am. Ceram. Soc. 1924, 7, 238–254; https://doi.org/10.1111/j.1151-2916.1924.tb18190.x.Search in Google Scholar

2. Aksay, I. A., Dabbs, D. M., Sarikaya, M. Mullite for structural, electronic, and optical applications. J. Am. Ceram. Soc. 1991, 74, 2343–2358; https://doi.org/10.1111/j.1151-2916.1991.tb06768.x.Search in Google Scholar

3. Schneider, H., Komarneni, S., Eds. Mullite; Wiley-VCH: Weinheim, 2005.Search in Google Scholar

4. Schneider, H., Schreuer, J., Hildmann, B. Structure and properties of mullite – a review. J. Eur. Ceram. Soc. 2008, 28, 329–344; https://doi.org/10.1016/j.jeurceramsoc.2007.03.017.Search in Google Scholar

5. Schneider, H., Fischer, R. X., Schreuer, J. Mullite: crystal structure and related properties. J. Am. Ceram. Soc. 2015, 98, 2948–2967; https://doi.org/10.1111/jace.13817.Search in Google Scholar

6. Birkenstock, J., Petříček, V., Pedersen, B., Schneider, H., Fischer, R. X. The modulated average structure of mullite. Acta Crystallogr. 2015, B71, 358–368; https://doi.org/10.1107/s205252061500757x.Search in Google Scholar

7. Rahman, S., Freimann, S. The real structure of mullite. In Mullite; Schneider, H., Komarneni, S., Eds.; Wiley-VCH: Weinheim, 2005; pp. 46–70.Search in Google Scholar

8. Welberry, T. R., Butler, B. D. Interpretation of diffuse X-ray scattering via models of disorder. J. Appl. Crystallogr. 1994, 27, 205–231; https://doi.org/10.1107/s0021889893011392.Search in Google Scholar

9. Fischer, R. X., Schneider, H., Voll, D. Formation of aluminum rich 9:1 mullite and its transformation to low alumina mullite upon heating. J. Eur. Ceram. Soc. 1996, 16, 109–113; https://doi.org/10.1016/0955-2219(95)00139-5.Search in Google Scholar

10. Schneider, H. Transition metal distribution in mullite. Ceram. Trans. 1990, 6, 135–158.Search in Google Scholar

11. Schneider, H. Foreign cation incorporation in mullite. In Mullite; Schneider, H., Komarneni, S., Eds.; Wiley-VCH: Weinheim, 2005; pp. 70–93.Search in Google Scholar

12. Gelsdorf, G., Müller-Hesse, H., Schwiete, H. E. Einlagerungsversuche an synthetischem Mullit und Substitutionsversuche mit Galliumoxyd und Germaniumdioxyd Teil II. Arch. für das Eisenhuttenwes. 1958, 29, 513–519; https://doi.org/10.1002/srin.195802265.Search in Google Scholar

13. Perez, Y., Jorba, M. Les systèmes GeO2 – Al2O3 et GeO2 – Fe2O3. Comparaison avec les systèmes correspondants à base de silice. Silic. Ind. 1968, 33, 11–17.Search in Google Scholar

14. Schneider, H., Werner, H. D. Synthesis and crystal chemistry of andalusite-, kyanite- and mullite-type structures in the system Al2Ge05-Fe2Ge05. Neues Jahrb. Mineral., Abh. 1981, 140, 153–164.Search in Google Scholar

15. Schneider, H., Werner, H. D. Synthesis and crystal chemistry of andalusite- and mullite-type structures in the system Al2Ge05-Ga2Ge05. Neues Jahrb. Mineral., Abh. 1982, 143, 223–230.Search in Google Scholar

16. Saalfeld, H., Gerlach, H. Solid-solution and optical properties of (Al, Ge)-mullites. Z. Kristallogr. 1991, 195, 65–73; https://doi.org/10.1524/zkri.1991.195.14.65.Search in Google Scholar

17. Voll, D., Lengauer, C., Beran, A., Schneider, H. Infrared band assignment and structural refinement of Al-Si, Al-Ge, and Ga-Ge mullites. Eur. J. Mineral. 2001, 13, 591–604; https://doi.org/10.1127/0935-1221/2001/0013-0591.Search in Google Scholar

18. Ďurovič, S., Fejdi, P. Synthesis and crystal structure of germanium mullite and crystallochemical parameters of D-mullites. Silikaty 1976, 20, 97–112.Search in Google Scholar

19. Lee, J. S., Kim, Y. J. Synthesis and luminescent properties of Al2O3-SiO2 phosphors. Ceram. Int. 2012, 38, S563–S566; https://doi.org/10.1016/j.ceramint.2011.05.098.Search in Google Scholar

20. Kutty, T. R. N., Nayak, M. Photoluminescence of Eu2+-doped mullite (xAl2O3·ySiO2; x/y= 3/2 and 2/1) prepared by a hydrothermal method. J. Mater. Chem. Phys. 2000, 65, 158–165; https://doi.org/10.1016/s0254-0584(00)00232-7.Search in Google Scholar

21. Park, J. K., Lim, M. A., Kim, C. H., Park, H. D., Choi, S. Y. Effect of composition on luminescence properties of Eu2+-activated mullite. J. Electrochem. Soc. 2003, 150, H246–H249; https://doi.org/10.1149/1.1606690.Search in Google Scholar

22. Zhang, L., Wang, J., Yao, H., Li, Z. Green photoluminescence of Tb3+ and Ce3+ doped mullite nanoparticles. Mater. Lett. 2009, 63, 1175–1176; https://doi.org/10.1016/j.matlet.2009.02.022.Search in Google Scholar

23. Angerer, P., Fischer, R. X., Schmücker, M., Schneider, H. Alkali gallates with mullite-type structure. J. Eur. Ceram. Soc. 2008, 28, 493–497; https://doi.org/10.1016/j.jeurceramsoc.2007.03.011.Search in Google Scholar

24. Fischer, R. X., Schmücker, M., Angerer, P., Schneider, H. Crystal structures of Na and K aluminate mullites. Am. Mineral. 2001, 86, 1513–1518; https://doi.org/10.2138/am-2001-11-1220.Search in Google Scholar

25. Saalfeld, H., Klaska, K. H. A Pb/Nd-stabilized mullite of the composition Al5.03Ge0.97Pb0.15Nd0.06O9.71. Z. Kristallogr. 1985, 172, 129–133; https://doi.org/10.1524/zkri.1985.172.14.129.Search in Google Scholar

26. Pouchou, J. L., Pichoir, F. Quantitative analysis of homogeneous or stratified microvolumes applying the model ‘‘PAP”. In Electron Probe Quantitation; Heinrich, K. F. J., Newbury, D. E., Eds., 1991; pp. 31–75.10.1007/978-1-4899-2617-3_4Search in Google Scholar

27. Sheldrick, G. M. Shelxl-97, A Program for Crystal Structure Refinement; University of Göttingen, 1997.Search in Google Scholar

28. Sheldrick, G. M. A short history of Shelx. Acta Crystallogr. A 2008, 64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

29. Farrugia, L. J. WinGx suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837–838; https://doi.org/10.1107/s0021889899006020.Search in Google Scholar

30. Fischer, R. X., Messner, T. Struplo, A New Version of the Structure Drawing Program, 2021. www.brass.uni-bremen.de.Search in Google Scholar

31. Wills, A. S. VaList Version 4.07, 2016. www.ccp14.ac.uk.Search in Google Scholar

32. Gagné, O. C., Hawthorne, F. C. Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallogr. 2015, 71, 562–578; https://doi.org/10.1107/s2052520615016297.Search in Google Scholar

33. Fischer, R. X., Schneider, H. The mullite-type family of crystal structures. In Mullite; Schneider, H., Komarneni, S., Eds.; Wiley-VCH: Weinheim, 2005; pp. 1–46.10.1002/3527607358Search in Google Scholar

34. Dudka, A. Refinement of the λ/2 contribution to CCD detector data. J. Appl. Crystallogr. 2010, 43, 27–32; https://doi.org/10.1107/s0021889809051577.Search in Google Scholar

35. Birkenstock, J., Nénert, G., Gesing, T. M., Burianek, M., Mühlberg, M., Fischer, R. X. Forbidden “reflections in neutron diffraction on bismuth metal oxides: symmetry reduction, λ/2 effect or Umweganregung? Z. Kristallogr. 2013, 228, 611–619; https://doi.org/10.1524/zkri.2013.1649.Search in Google Scholar

36. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, 32, 751–767; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar

37. Medenbach, O. A new microrefractometer spindle-stage and its application. Fortschr. Mineral. 1985, 63, 111–133.Search in Google Scholar

38. Gunter, M. E., Downs, R. T., Bartelmehs, K. L., Evans, S. H., Pommier, C. J. S., Grow, J. S., Sanchez, M. S., Bloss, F. D. Optic properties of centimeter-sized crystals determined in air with the spindle stage using EXCALIBRW. Am. Mineral. 2005, 90, 1648–1654; https://doi.org/10.2138/am.2005.1892.Search in Google Scholar

39. Neumann, C. Schmelzsynthesen von Mulliten unterschiedlicher Zusammensetzung und ihre röntgenoraphische Charakterisierung. Dissertation Hamburg, 1984.Search in Google Scholar

40. Saalfeld, H., Guse, W. Mullite single crystal growth and characterization. Ceram. Trans. 1990, 6, 73–101.Search in Google Scholar

41. Lenz, S., Birkenstock, J., Fischer, L. A., Schüller, W., Schneider, H., Fischer, R. X. Natural mullites: chemical composition, crystal structure, and optical properties. Eur. J. Mineral. 2019, 31, 353–367; https://doi.org/10.1127/ejm/2019/0031-2812.Search in Google Scholar

42. Saalfeld, H., Guse, W. Structure refinement of 3:2-mullite (3 Al2O3 · 2 SiO2). Neues Jahrb. Mineral., Monatsh. 1981, 145–150.Search in Google Scholar

43. Parmentier, J., Vilminot, S., Dormann, J. L. Fe- and Cr-substituted mullites: Mössbauer spectroscopy and Rietveld structure refinement. Solid State Sci. 1999, 1, 257–265; https://doi.org/10.1016/s1293-2558(00)80080-1.Search in Google Scholar

44. Rager, H., Schneider, H., Graetsch, H. Chromium incorporation in mullite. Am. Mineral. 1990, 75, 392–397.Search in Google Scholar

45. Ikeda, K., Schneider, H., Akasaka, M., Rager, H. Crystal-field spectroscopy study of Cr-doped mullite. Am. Mineral. 1992, 77, 251–257.Search in Google Scholar

46. Bauchspieß, K. R., Schneider, H., Kulikov, A. EXAFS studies of Cr-doped mullite. J. Eur. Ceram. Soc. 1996, 16, 203–209; https://doi.org/10.1016/0955-2219(95)00132-8.Search in Google Scholar

47. Piriou, B., Rager, H., Schneider, H. Time-resolved fluorescence spectroscopy of Cr3+ in mullite. J. Eur. Ceram. Soc. 1996, 16, 195–201; https://doi.org/10.1016/0955-2219(95)00148-4.Search in Google Scholar

48. Fischer, R. X., Schneider, H. Crystal structure of Cr-mullite. Am. Mineral. 2000, 85, 1175–1179; https://doi.org/10.2138/am-2000-8-909.Search in Google Scholar

49. Tkalčec, E., Gržeta, B., Popovič, J., Ivankovič, H., Rakvin, B. Structural studies of Cr-doped mullite derived from single-phase precursors. J. Phys. Chem. Solids 2006, 67, 828–835; https://doi.org/10.1016/j.jpcs.2005.12.002.Search in Google Scholar

50. Rossouw, C. J., Miller, P. R. Location of interstitial Cr in mullite by incoherent channeling patterns from characteristic X-ray emission. Am. Mineral. 1999, 84, 965–969; https://doi.org/10.2138/am-1999-5-632.Search in Google Scholar

51. Rossouw, C. J., Miller, P. R. Analysis of incoherent channeling patterns formed by X-ray emission from host lattice species and interstitial Cr in mullite. J. Electron. Microsc. 1999, 48, 849–864; https://doi.org/10.1093/oxfordjournals.jmicro.a023757.Search in Google Scholar

52. Mandarino, J. A. The Gladstone-Dale relationship: part IV. The compatibility concept and its application. Can. Mineral. 1981, 19, 441–450.Search in Google Scholar

53. Fischer, R. X., Burianek, M., Shannon R. D., POLARIO, a computer program for calculating refractive indices from chemical compositions. Am. Mineral. 2018, 103, 1345–1348; https://doi.org/10.2138/am-2018-6587.Search in Google Scholar

54. Bloss, F. D. An Introduction to the Methods of Optical Crystallography; Holt, Rinehart and Winston: New York, USA, 1961.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zkri-2022-0026).


Received: 2022-04-13
Accepted: 2022-07-01
Published Online: 2023-04-24
Published in Print: 2023-05-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2022-0026/html
Scroll to top button