Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) April 21, 2023

Ternary amalgams: expanding the structural variety of the Gd14Ag51 family

  • Timotheus Hohl , Lukas Nusser , Jessica Wulfes and Constantin Hoch EMAIL logo

Abstract

In intermetallic chemistry, the Gd14Ag51 structure type is rather common and has many amalgam representatives. Up to today, binary amalgams of this type have been described for M = Na, Ca, Sr, Eu, Yb, and the structure family still is growing. Yb11Hg54 is the only representative with a fully ordered crystal structure, and all other representatives exhibit individual disorder phenomena or patterns. The diversity of disorder phenomena in this structural family is unique. In order to shed a light on the underlying reasons for this unexpected structural complexity, we compare the available literature structure models with three new ternary variants, Yb10.7Sr0.3Hg54, Ca4.5Eu6.5Hg54 and Ca6.9Na4.1Hg54 (all in space group type P 6 , a = 13.5379(12), 13.5406(8) and 13.564(5) Å, c = 9.7488(14), 9.7149 and 9.810(7) Å for Yb10.7Sr0.3Hg54, Ca4.5Eu6.5Hg54 and Ca6.9Na4.1Hg54, respectively). Their crystal structures have been examined in detail on the basis of both single crystal and powder X-ray diffraction data. Each of the three new amalgams exhibits its own set of disorder phenomena that is again different from those of the respective binary variants. The synopsis of the crystal structures and their individual disorder phenomena indicates that the reason for the disorder phenomena cannot be found only by analyzing geometric details such as atomic radii quotients or coordination polyhedral volumina, and additional electronic reasons must be assumed.


Corresponding author: Constantin Hoch, Department Chemie, LMU München, Butenandtstr. 5–13(D), D-81377 München, Germany, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Parts of this research were carried out at PETRA III, beamline P02.1 within the rapid access program 2021A under proposal ID RAt-20010291. Financial support by the Deutsche Forschungsgemeinschaft within the project with No. 659982 is also gratefully acknowledged.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Simons, J. H., Seward, R. P. J. Chem. Phys. 1938, 6, 790–794; https://doi.org/10.1063/1.1750172.Search in Google Scholar

2. Tambornino, F., Hoch, C. Z. Kristallogr. 2017, 232, 557–565; https://doi.org/10.1515/zkri-2016-2036.Search in Google Scholar

3. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds; ASM International: Materials Park, Ohio, USA, 2016.Search in Google Scholar

4. McMasters, O. D., Gschneider, K. A., Venteicher, R. F. Acta Crystallogr. 1970, B26, 1224–1229; https://doi.org/10.1107/s0567740870003928.Search in Google Scholar

5. Steeb, S., Godel, D., Löhr, C. J. Less-Common Met. 1968, 15, 137–141; https://doi.org/10.1016/0022-5088(68)90047-7.Search in Google Scholar

6. Donolato, C., Steeb, S. J. Less-Common Met. 1969, 18, 312–313; https://doi.org/10.1016/0022-5088(69)90170-2.Search in Google Scholar

7. Runnalls, O. J. C. Can. J. Chem. 1956, 34, 133–145; https://doi.org/10.1139/v56-017.Search in Google Scholar

8. McMasters, O. D., Gschneidner, K. A., Bruzzone, G., Palenzona, A. J. Less-Common Met. 1971, 25, 135–160; https://doi.org/10.1016/0022-5088(71)90125-1.Search in Google Scholar

9. Kutaitsev, V. I., Chebotarev, N. T., Andrianov, M. A., Konev, V. N., Lebedev, I. G., Bagrova, V. I., Beznosikova, A. V., Kruglov, A. A., Petrov, P. N., Smotritskaya, E. S. Sov. At. Energ. 1967, 23, 1279–1287; https://doi.org/10.1007/bf01162033.Search in Google Scholar

10. Palenzona, A., Cirafici, S. J. Less-Common Met. 1986, 124, 245–249; https://doi.org/10.1016/0022-5088(86)90497-2.Search in Google Scholar

11. Dommann, A., Hulliger, F. J. Less-Common Met. 1988, 141, 261–273; https://doi.org/10.1016/0022-5088(88)90412-2.Search in Google Scholar

12. Bruzzone, G. Gazz. Chim. Ital. 1972, 102, 234–242.10.2307/3957633Search in Google Scholar

13. Palenzona, A. J. Less-Common Met. 1971, 25, 367–372; https://doi.org/10.1016/0022-5088(71)90179-2.Search in Google Scholar

14. Bruzzone, G., Merlo, F. J. Less-Common Met. 1973, 32, 237–241; https://doi.org/10.1016/0022-5088(73)90091-x.Search in Google Scholar

15. Gabathuler, J. P., White, P., Parthé, E. Acta Crystallogr. 1975, B31, 608–610; https://doi.org/10.1107/s0567740875003378.Search in Google Scholar

16. Berlin, B. J. Less-Common Met. 1972, 29, 337–348; https://doi.org/10.1016/0022-5088(72)90198-1.Search in Google Scholar

17. Belyavina, N. N., Markiv, V. Y., Nakonechna, O. I. Ukr. Khim. Zh. 2009, 75, 67–72.Search in Google Scholar

18. Tkachuk, A. V., Mar, A. Inorg. Chem. 2008, 47, 1313–1318; https://doi.org/10.1021/ic7015148.Search in Google Scholar PubMed

19. Tambornino, F., Hoch, C. Z. Anorg. Allg. Chem. 2015, 641, 537–542; https://doi.org/10.1002/zaac.201400561.Search in Google Scholar

20. Hoch, C., Simon, A. Angew. Chem. Int. Ed. 2012, 51, 3262–3265; https://doi.org/10.1002/anie.201108064.Search in Google Scholar PubMed

21. Liang, J., Liao, C., Tang, Y., Yin, C., Han, Y., Nong, L. Q., Xie, S. J. Alloys Compd. 2010, 502, 68–73; https://doi.org/10.1016/j.jallcom.2010.04.148.Search in Google Scholar

22. Gumeniuk, R. V., Taras, I. B., Kuz’ma, Y. B. J. Alloys Compd. 2006, 416, 131–134; https://doi.org/10.1016/j.jallcom.2005.08.038.Search in Google Scholar

23. Gumeniuk, R. V., Stelmakhovych, B. M., Kuz’ma, Y. B. J. Alloys Compd. 2003, 352, 128–133; https://doi.org/10.1016/s0925-8388(02)01160-x.Search in Google Scholar

24. Liang, J. L., Du, Y., Tang, Y. Y., Liao, C. Z., Meng, J. L., Xu, H. H. J. Alloys Compd. 2009, 481, 264–269; https://doi.org/10.1016/j.jallcom.2009.03.175.Search in Google Scholar

25. de Negri, S., Solokha, P. G., Pavlyuk, V. V., Saccone, A. Intermetallics 2011, 19, 671–681; https://doi.org/10.1016/j.intermet.2011.01.007.Search in Google Scholar

26. Liang, J., Liao, C., Du, Y., Tang, Y., Han, Y., He, Y., Liu, S. J. Alloys Compd. 2010, 493, 122–127; https://doi.org/10.1016/j.jallcom.2009.12.087.Search in Google Scholar

27. Mazzone, D., Riani, P., Zanicchi, G., Marazza, R., Ferro, R. Intermetallics 2002, 10, 801–809; https://doi.org/10.1016/s0966-9795(02)00056-0.Search in Google Scholar

28. Lin, Q., Corbett, J. D. Inorg. Chem. 2011, 50, 1808–1815; https://doi.org/10.1021/ic102243c.Search in Google Scholar PubMed

29. Kontani, M., Nishioka, T., Hamaguchi, Y., Matsui, H., Aruga Katori, H., Goto, T. J. Phys. Soc. Jpn. 1994, 63, 3421–3430; https://doi.org/10.1143/jpsj.63.3421.Search in Google Scholar

30. Verbovytsky, Y. V. Chem. Met. Alloys 2014, 7, 42–55; https://doi.org/10.30970/cma7.0268.Search in Google Scholar

31. Mazzone, D., Marazza, R., Riani, P., Zanicchi, G., Cacciamani, G., Fornasini, M. L., Manfrinetti, P. Calphad 2009, 33, 31–43; https://doi.org/10.1016/j.calphad.2008.09.017.Search in Google Scholar

32. Markiv, V. Y., Shevchenko, I. P., Belyavina, N. N., Kuz’menko, P. P. Dopov. Akad. Nauk. Ukr. RSR 1985, A7, 76–81.Search in Google Scholar

33. Gumenyuk, R. V., Kuz’ma, Y. B. Inorg. Mater. 2007, 43, 135–137; https://doi.org/10.1134/s0020168507020070.Search in Google Scholar

34. Shevchenko, I. P., Markiv, V. Y., Yarmolyuk, Y. P., Grin, Y., Fedorchuk, A. O. Russ. Metall. 1989, 1, 219–222.Search in Google Scholar

35. Markiv, V. Y., Shevchenko, I. P., Belyavina, N. N. Russ. Metall. 1989, 2, 201–206.Search in Google Scholar

36. Markiv, V. Y., Belyavina, N. N., Gavrilenko, I. S. Russ. Metall. 1984, 5, 227–230.Search in Google Scholar

37. Markiv, V. Y., Shevchenko, I. P., Belyavina, N. N., Kuz’menko, P. P. Dopov. Akad. Nauk. Ukr. RSR 1986, A11, 78–81.Search in Google Scholar

38. Myronenko, P., Myakush, O. R., Babizhetskii, V. S., Kotur, B. Y. Visn. Lviv. Derzh. Univ., Ser. Chim. 2011, 52, 22–26.Search in Google Scholar

39. X-Shape (version 2.07); Stoe & Cie.: Darmstadt (Germany), 2005.Search in Google Scholar

40. X-Red (version 1.31); Stoe & Cie.:Darmstadt (Germany), 2005.Search in Google Scholar

41. Apex-3; Bruker ACS Inc.: Madison (USA), 2021.Search in Google Scholar

42. Prescher, C., Prakapenka, V. B. High Pess. Res. 2015, 35, 223–230; https://doi.org/10.1080/08957959.2015.1059835.Search in Google Scholar

43. Toby, B. H., van Dreele, R. B. J. Appl. Crystallogr. 2013, 46, 544–549; https://doi.org/10.1107/s0021889813003531.Search in Google Scholar

44. Krivovichev, S. Acta Crystallogr. 2012, A68, 393–398; https://doi.org/10.1107/s0108767312012044.Search in Google Scholar

45. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

46. Parthé, E., Gelato, L. M. Acta Crystallogr. 1984, A40, 169–183; https://doi.org/10.1107/s0108767384000416.Search in Google Scholar

47. Momma, K., Izumi, F. J. Appl. Crystallogr. 2011, 44, 1272–1276; https://doi.org/10.1107/s0021889811038970.Search in Google Scholar

48. Haynes, W. M., Ed. CRC Handbook of Chemistry and Physics, 97th ed.; CRC Press: Boca Raton, Florida, USA, 2015.Search in Google Scholar

Received: 2023-02-13
Accepted: 2023-03-28
Published Online: 2023-04-21
Published in Print: 2023-05-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2023-0007/html
Scroll to top button