Skip to main content
Log in

Stabilized BEM-MEL for fully nonlinear wave-body interactions using a mesh adjustment velocity

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

The conventional wave-body interaction analysis method, which uses the boundary element and Lagrangian time evolution methods (BEM-MEL), can cause numerical instability, and several solutions have been proposed. In this study, we propose a new method for removing mesh distortion using the mesh adjustment velocity and putting the nodes on the correct Neumann boundary surface using the clinging velocity. The stability of the proposed method and the convergence of present results to the experimental results were investigated. The simulation is well stabilized using the present method, allowing for a large time step in the initial value problem. Furthermore, the calculation results agree well with previous experimental and numerical results. The proposed method enables BEM-MEL to simulate violent phenomena efficiently and expands the scope of BEM-MEL application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Robertson AN, Wendt F, Jonkman JM, Popko W, Dagher H, Gueydon S, Qvist J, Vittori F, Azcona J, Uzunoglu E, Soares CG, Harries R, Yde A, Galinos C, Hermans K, de Vaal JB, Bozonnet P, Bouy L, Bayati I, Bergua R, Galvan J, Mendikoa I, Sanchez CB, Shin H, Oh S, Molins C, Debruyne Y (2017) OC5 Project Phase II: validation of global loads of the DeepCwind floating semisubmersible wind turbine. Energy Procedia 137:38–57. https://doi.org/10.1016/j.egypro.2017.10.333

    Article  Google Scholar 

  2. Robertson AN, Gueydon S, Bachynski E, Wang L, Jonkman J, Alarcón D, Amet E, Beardsell A, Bonnet P, Boudet B, Brun C, Chen Z, Féron M, Forbush D, Galinos C, Galvan J, Gilbert P, Gómez J, Harnois V, Haudin F, Hu Z, Dreff JL, Leimeister M, Lemmer F, Li H, McKinnon G, Mendikoa I, Moghtadaei A, Netzband S, Oh S, Pegalajar-Jurado A, Nguyen MQ, Ruehl K, Schünemann P, Shi W, Shin H, Si Y, Surmont F, Trubat P, Qwist J, Wohlfahrt-Laymann S (2020) OC6 Phase I: investigating the underprediction of low-frequency hydrodynamic loads and responses of a floating wind turbine. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1618/3/032033

    Article  Google Scholar 

  3. Wang L, Robertson A, Jonkman J, Yu Y-H (2022) OC6 phase I: improvements to the OpenFAST predictions of nonlinear, low-frequency responses of a floating offshore wind turbine platform. Renew Energy 187:282–301. https://doi.org/10.1016/j.renene.2022.01.053

    Article  Google Scholar 

  4. Fochesato C, Dias F (2006) A fast method for nonlinear three-dimensional free-surface waves. Proc R Soc A Math Phys Eng Sci 462(2073):2715–2735. https://doi.org/10.1098/rspa.2006.1706

    Article  MathSciNet  MATH  Google Scholar 

  5. Harris JC, Dombre E, Benoit M, Grilli ST, Kuznetsov KI (2022) Nonlinear time-domain wave-structure interaction: a parallel fast integral equation approach. Int J Numer Methods Fluids 94(2):188–222. https://doi.org/10.1002/fld.5051

    Article  MathSciNet  Google Scholar 

  6. Longuet-Higgins MS, Cokelet ED (1976) The deformation of steep surface waves on water—I. A numerical method of computation. Proc R Soc Lond A Math Phys Sci 350(1660):1–26. https://doi.org/10.1098/rspa.1976.0092

    Article  MathSciNet  MATH  Google Scholar 

  7. Bai W, Eatock Taylor R (2006) Higher-order boundary element simulation of fully nonlinear wave radiation by oscillating vertical cylinders. Appl Ocean Res 28(4):247–265. https://doi.org/10.1016/j.apor.2006.12.001

    Article  Google Scholar 

  8. Bai W, Eatock Taylor R (2007) Numerical simulation of fully nonlinear regular and focused wave diffraction around a vertical cylinder using domain decomposition. Appl Ocean Res 29(1–2):55–71. https://doi.org/10.1016/j.apor.2007.05.005

    Article  Google Scholar 

  9. Bai W, Eatock Taylor R (2009) Fully nonlinear simulation of wave interaction with fixed and floating flared structures. Ocean Eng 36(3–4):223–236. https://doi.org/10.1016/j.oceaneng.2008.11.003

    Article  Google Scholar 

  10. Feng X, Bai W (2017) Hydrodynamic analysis of marine multibody systems by a nonlinear coupled model. J Fluids Struct 70:72–101. https://doi.org/10.1016/j.jfluidstructs.2017.01.016

    Article  Google Scholar 

  11. Dombre E, Harris JC, Benoit M, Violeau D, Peyrard C (2019) A 3D parallel boundary element method on unstructured triangular grids for fully nonlinear wave-body interactions. Ocean Eng 171(2018):505–518. https://doi.org/10.1016/j.oceaneng.2018.09.044

    Article  Google Scholar 

  12. Zhou BZ, Ning DZ, Teng B, Bai W (2013) Numerical investigation of wave radiation by a vertical cylinder using a fully nonlinear HOBEM. Ocean Eng 70:1–13. https://doi.org/10.1016/j.oceaneng.2013.04.019

    Article  Google Scholar 

  13. Zhang C (2015) Application of an improved semi-Lagrangian procedure to fully-nonlinear simulation of sloshing in non-wall-sided tanks. Appl Ocean Res 51:74–92. https://doi.org/10.1016/j.apor.2015.03.001

    Article  Google Scholar 

  14. Wang C, Khoo BC, Yeo KS (2003) Elastic mesh technique for 3D BIM simulation with an application to underwater explosion bubble dynamics. Comput Fluids 32(9):1195–1212. https://doi.org/10.1016/S0045-7930(02)00105-6

    Article  MATH  Google Scholar 

  15. Zhang AM, Liu YL (2015) Improved three-dimensional bubble dynamics model based on boundary element method. J Comput Phys 294:208–223. https://doi.org/10.1016/j.jcp.2015.03.049

    Article  MathSciNet  MATH  Google Scholar 

  16. Hamano K, Murashige S, Hayami K (2003) Boundary element simulation of large amplitude standing waves in vessels. Eng Anal Bound Elem 27(6):565–574. https://doi.org/10.1016/S0955-7997(03)00041-9

    Article  MATH  Google Scholar 

  17. Zhang YL, Yeo KS, Khoo BC, Wang C (2001) 3D jet impact and toroidal bubbles. J Comput Phys 166(2):336–360. https://doi.org/10.1006/jcph.2000.6658

    Article  MATH  Google Scholar 

  18. Loewenberg M, Hinch EJ (1996) Numerical simulation of a concentrated emulsion in shear flow. J Fluid Mech 321:395–419. https://doi.org/10.1017/S002211209600777X

    Article  MATH  Google Scholar 

  19. Hu P, Wu GX, Ma QW (2002) Numerical simulation of nonlinear wave radiation by a moving vertical cylinder. Ocean Eng 29(14):1733–1750. https://doi.org/10.1016/S0029-8018(02)00002-1

    Article  Google Scholar 

  20. Retzler CH, Chaplin JR, Rainey RCT (2000) Transient motion of a vertical cylinder: measurements and computations of the free surface. In: Proc. 15th Int. Work. Water Waves Float. Bodies. http://www.iwwwfb.org/Workshops/15.htm

  21. Goring DG (1979) Tsunamis: the propagation of long waves onto a shelf. PhD Thesis 1979, 356 arXiv:9705052v1 [arXiv:quant-ph]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoaki Hirakawa.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirakawa, T. Stabilized BEM-MEL for fully nonlinear wave-body interactions using a mesh adjustment velocity. J Mar Sci Technol 28, 496–505 (2023). https://doi.org/10.1007/s00773-023-00936-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-023-00936-7

Keywords

Navigation