skip to main content
research-article

Large-scale Terrain Authoring through Interactive Erosion Simulation

Published:28 July 2023Publication History
Skip Abstract Section

Abstract

Large-scale terrains are essential in the definition of virtual worlds. Given the diversity of landforms and the geomorphological complexity, there is a need for authoring techniques offering hydrological consistency without sacrificing user control. In this article, we bridge the gap between large-scale erosion simulation and authoring into an efficient framework. We set aside modeling in the elevation domain in favour of the uplift domain and compute emerging reliefs by simulating the stream power erosion. Our simulation relies on a fast yet accurate approximation of drainage area and flow routing to compute the erosion interactively, which allows for incremental authoring. Our model provides landscape artists with tools for shaping mountain ranges and valleys, such as copy-and-paste operations; warping for imitating folds and faults; and point and curve elevation constraints to precisely sculpt ridges or carve river networks. It also lends itself to inverse procedural modeling by reconstructing the uplift from an input digital elevation model and allows hydrologically consistent blending between terrain patches.

Skip Supplemental Material Section

Supplemental Material

tog-22-0082-file003.mp4

mp4

244.9 MB

REFERENCES

  1. Argudo Oscar, Galin Eric, Peytavie Adrien, Paris Axel, Gain James, and Guérin Eric. 2019. Orometry-based terrain analysis and synthesis. ACM Trans. Graph. 38, 6, Article 199 (2019), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Barnes Richard. 2019. Accelerating a fluvial incision and landscape evolution model with parallelism. Geomorphology 330 (2019), 2839.Google ScholarGoogle ScholarCross RefCross Ref
  3. Barnes Richard, Lehman Clarence, and Mulla David. 2014. Priority-flood: An optimal depression-filling and watershed-labeling algorithm for digital elevation models. Comput. Geosci. 62 (2014), 117127.Google ScholarGoogle ScholarCross RefCross Ref
  4. Benes Bedrich. 2007. Real-time erosion using shallow water simulation. In Proceedings of Virtual Reality Interactions and Physical Simulations. Eurographics Association, 4350.Google ScholarGoogle Scholar
  5. Bonetti Sara, Hooshyar Milad, Camporeale Carlo, and Porporato Amilcare. 2020. Channelization cascade in landscape evolution. Proc. Natl. Acad. Sci. U.S.A. 117, 3 (2020), 13751382.Google ScholarGoogle ScholarCross RefCross Ref
  6. Bradbury Gwyneth, Choi Il, Amati Cristina, Mitchell Kenny, and Weyrich Tim. 2014. Frequency-based creation and editing of virtual terrain. In Proceedings of the European Conference on Visual Media Production. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cordonnier Guillaume, Bovy Benoît, and Braun Jean. 2019. A versatile, linear complexity algorithm for flow routing in topographies with depressions. Earth Surf. Dynam. 7, 2 (2019), 549562.Google ScholarGoogle ScholarCross RefCross Ref
  8. Cordonnier Guillaume, Braun Jean, Cani Marie-Paule, Benes Bedrich, Galin Eric, Peytavie Adrien, and Guérin Éric. 2016. Large scale terrain generation from tectonic uplift and fluvial erosion. Comput. Graph. Forum 35, 2 (2016), 165175.Google ScholarGoogle ScholarCross RefCross Ref
  9. Cordonnier Guillaume, Cani Marie-Paule, Benes Bedrich, Braun Jean, and Galin Eric. 2018. Sculpting mountains: Interactive terrain modeling based on subsurface geology. IEEE Trans. Vis. Comput. Graph. 24, 5 (2018), 17561769.Google ScholarGoogle ScholarCross RefCross Ref
  10. Crespin Benoît, Blanc Carole, and Schlick Christophe. 1996. Implicit sweep objects. Comput. Graph. Forum 15, 3 (1996), 165174.Google ScholarGoogle ScholarCross RefCross Ref
  11. Carpentier Giliam J. P. de and Bidarra Rafael. 2009. Interactive GPU-based procedural heightfield brushes. In Proceedings of the International Conference on Foundations of Digital Games. ACM, 5562.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Ebert David S., Musgrave Forest Kenton, Peachey Darwyn, Perlin Ken, and Worley Steven. 1998. Texturing and Modeling: A Procedural Approach (3rd ed.). Elsevier.Google ScholarGoogle Scholar
  13. Gain James, Merry Bruce, and Marais Patrick. 2015. Parallel, realistic and controllable terrain synthesis. Comput. Graph. Forum 34, 2 (2015), 105116.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Gain James E., Marais Patrick, and Strasser Wolfgang. 2009. Terrain sketching. In Proceedings of the Symposium on Interactive 3D Graphics and Games. ACM, 3138.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Galin Eric, Guérin Eric, Peytavie Adrien, Cordonnier Guillaume, Cani Marie-Paule, Benes Bedrich, and Gain James. 2019. A review of digital terrain modeling. Comput. Graph. Forum 38, 2 (2019), 553577.Google ScholarGoogle ScholarCross RefCross Ref
  16. Génevaux Jean-David, Galin Éric, Guérin Éric, Peytavie Adrien, and Beneš. Bedřich2013. Terrain generation using procedural models based on hydrology. ACM Trans. Graph. 32, 4 (2013), 143:1–143:13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Génevaux Jean-David, Galin Éric, Peytavie Adrien, Guérin Éric, Briquet Cyril, Grosbellet François, and Benes Bedrich. 2015. Terrain modeling from feature primitives. Comput. Graph. Forum 34, 6 (2015), 198210.Google ScholarGoogle ScholarCross RefCross Ref
  18. Guérin Eric, Digne Julie, Galin Eric, and Peytavie Adrien. 2016. Sparse representation of terrains for procedural modeling. Comput. Graph. Forum 35, 2 (2016), 177187.Google ScholarGoogle ScholarCross RefCross Ref
  19. Guérin Eric, Digne Julie, Galin Eric, Peytavie Adrien, Wolf Christian, Benes Bedrich, and Martinez Benoit. 2017. Interactive example-based terrain authoring with conditional generative adversarial networks. ACM Trans. Graph. 36, 6, Article 228 (2017), 13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Guerin Eric, Peytavie Adrien, Masnou Simon, Digne Julie, Sauvage Basile, Gain James, and Galin Eric. 2022. Gradient terrain authoring. Comput. Graph. Forum 44, 2 (2022), 8595.Google ScholarGoogle ScholarCross RefCross Ref
  21. Hack John T.. 1957. Studies of Longitudinal Stream Profiles in Virginia and Maryland. U.S Geological Survey Professional Paper294-B (1957), 4597.Google ScholarGoogle Scholar
  22. Harel Elhanan, Goren Lian, Crouvi Onn, Ginat Hanan, and Shelef Eitan. 2022. Drainage reorganization induces deviations in width-area-slope scaling of valleys and channels. Earth Surf. Dynam. Discuss. 2022 (2022), 135.Google ScholarGoogle Scholar
  23. Hart John C.. 1996. Sphere tracing: A geometric method for the antialiased ray tracing of implicit surfaces. Vis. Comput. 12, 10 (1996), 527545.Google ScholarGoogle ScholarCross RefCross Ref
  24. Hergarten. Stefan2021. Modeling glacial and fluvial landform evolution at large scales using a stream-power approach. Earth Surf. Dynam. 9, 4 (2021), 937952.Google ScholarGoogle ScholarCross RefCross Ref
  25. Hnaidi Houssam, Guérin Éric, Akkouche Samir, Peytavie Adrien, and Galin Éric. 2010. Feature based terrain generation using diffusion equation. Comput. Graph. Forum 29, 7 (2010), 21792186.Google ScholarGoogle ScholarCross RefCross Ref
  26. Holmgren. Peter1994. Multiple flow direction algorithms for runoff modelling in grid based elevation models: An empirical evaluation. Hydrol. Process. 8 (1994), 327334.Google ScholarGoogle ScholarCross RefCross Ref
  27. Hooshyar Milad, Anand Shashank, and Porporato Amilcare. 2020. Variational analysis of landscape elevation and drainage networks. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 476, 2239 (2020), 20190775.Google ScholarGoogle Scholar
  28. Howard Alan D. and Kerby Gordon. 1983. Channel changes in badlands. Geol. Soc. Am. Bull. 94, 6 (1983), 739–52.Google ScholarGoogle ScholarCross RefCross Ref
  29. Kelley Alex D., Malin Michael C., and Nielson Gregory M.. 1988. Terrain simulation using a model of stream erosion. Comput. Graph. 22, 4 (1988), 263268.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Krištof Peter, Benes Bedrich, Křivánek Jaroslav, and Šťava Ondřej. 2009. Hydraulic erosion using smoothed particle hydrodynamics. Comput. Graph. Forum 28, 2 (2009), 219228.Google ScholarGoogle ScholarCross RefCross Ref
  31. Lagae Ares and Dutré Philip. 2006. An alternative for Wang tiles: Colored edges versus colored corners. ACM Trans. Graph. 25, 4 (2006), 14421459.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Lindsay. John B.2016. Efficient hybrid breaching-filling sink removal methods for flow path enforcement in digital elevation models. Hydrol. Process. 30, 6 (2016), 846857.Google ScholarGoogle ScholarCross RefCross Ref
  33. Mei Xing, Decaudin Philippe, and Hu Baogang. 2007. Fast hydraulic erosion simulation and visualization on GPU. In Pacific Graphics. IEEE, 4756.Google ScholarGoogle Scholar
  34. Murray. Eden1961. A two-dimensional growth process. In Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, Vol. 2. University of California Press, 223239.Google ScholarGoogle Scholar
  35. Musgrave Forest Kenton, Kolb Craig E., and Mace Robert S.. 1989. The synthesis and rendering of eroded fractal terrains. Comput. Graph. 23, 3 (1989), 4150.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Neidhold Benjamin, Wacker Markus, and Deussen Olivier. 2005. Interactive physically based fluid and erosion simulation. In Proceedings of the Eurographics Workshop on Natural Phenomena. Eurographics Association, 2532.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Peytavie Adrien, Dupont Thibault, Guérin Eric, Cortial Yann, Benes Benes, Gain James, and Galin Eric. 2019. Procedural riverscapes. Comput. Graph. Forum 38, 7 (2019), 3546.Google ScholarGoogle ScholarCross RefCross Ref
  38. Roudier Pascale, Peroche Bernard, and Perrin Michel. 1993. Landscapes synthesis achieved through erosion and deposition process simulation. Comput. Graph. Forum 12, 3 (1993), 375383.Google ScholarGoogle ScholarCross RefCross Ref
  39. Rusnell Brennan, Mould David, and Eramian Mark G.. 2009. Feature-rich distance-based terrain synthesis. Vis. Comput. 25, 5-7 (2009), 573579.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Sassolas-Serrayet Timothée, Cattin Rodolphe, and Ferry Matthieu. 2018. The shape of watersheds. Nat. Commun. 9, 3791 (2018).Google ScholarGoogle Scholar
  41. Scott Joshua J. and Dodgson. Neil A.2021. Example-based terrain synthesis with pit removal. Comput. Graph. 99, C (2021), 4353.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Seibert Jan and McGlynn. Brian L.2007. A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resourc. Res. 43, 4 (2007), 18.Google ScholarGoogle ScholarCross RefCross Ref
  43. Šťava Ondřej, Beneš Bedřich, Brisbin Matthew, and Křivánek Jaroslav. 2008. Interactive terrain modeling using hydraulic erosion. In Proceedings of the Symposium on Computer Animation. 201210.Google ScholarGoogle Scholar
  44. Tasse Flora Ponjou, Emilien Arnaud, Cani Marie-Paule, Hahmann Stefanie, and Bernhardt Adrien. 2014. First person sketch-based terrain editing. In Proceedings of Graphics Interface. Canadian Information Processing Society, 217224.Google ScholarGoogle Scholar
  45. Theodoratos Nikos and Kirchner James W.. 2020. Dimensional analysis of a landscape evolution model with incision threshold. Earth Surf. Dynam. 8, 2 (2020), 505526.Google ScholarGoogle ScholarCross RefCross Ref
  46. Vanek Juraj, Benes Bedrich, Herout Adam, and Stava Ondrej. 2011. Large-scale physics-based terrain editing using adaptive tiles on the GPU. IEEE Comput. Graph. Appl. 31, 6 (2011), 3544.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Wang Chang Y., Liu Pei-Ling, and Bassingthwaighte James. 1995. Off-lattice Eden-C cluster growth model. J. Phys. A: Math. Gen. 28 (1995), 21412148.Google ScholarGoogle ScholarCross RefCross Ref
  48. Whipple Kelin X. and Tucker Gregory E.. 1999. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res.: Solid Earth 104, B8 (1999), 1766117674.Google ScholarGoogle ScholarCross RefCross Ref
  49. Willett Sean, Beaumont Christopher, and Fullsack Philippe. 1993. Mechanical model for the tectonics of doubly vergent compressional orogens. Geology 21, 4 (1993), 371374.Google ScholarGoogle ScholarCross RefCross Ref
  50. Yuan Xiaoping P., Braun Jean, Guerit Laure, Rouby Delphine, and Cordonnier Guillaume. 2019. A new efficient method to solve the stream power law model taking into account sediment deposition. J. Geophys. Res.: Earth Surf. 124, 6 (2019), 13461365.Google ScholarGoogle ScholarCross RefCross Ref
  51. Zhang Eugene, Hays James, and Turk Greg. 2007. Interactive tensor field design and visualization on surfaces. IEEE Trans. Vis. Comput. Graph. 13, 1 (2007), 94107.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Zhao Yiwei, Liu Han, Borovikov Igor, Beirami Ahmad, Sanjabi Maziar, and Zaman Kazi. 2019. Multi-theme generative adversarial terrain amplification. ACM Trans. Graph. 38, 6, Article 200 (2019), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Zhou Howard, Sun Jie, Turk Greg, and Rehg James M.. 2007. Terrain synthesis from digital elevation models. IEEE Trans. Vis. Comput. Graph. 13, 4 (2007), 834848.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Large-scale Terrain Authoring through Interactive Erosion Simulation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 42, Issue 5
      October 2023
      195 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3607124
      Issue’s Table of Contents

      Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 28 July 2023
      • Online AM: 25 April 2023
      • Accepted: 13 March 2023
      • Revised: 18 January 2023
      • Received: 6 October 2022
      Published in tog Volume 42, Issue 5

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    View Full Text