Skip to main content

Advertisement

Log in

Relaxation and Domain Wall Structure of Bilayer Moiré Systems

  • Original Research
  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Moiré patterns result from setting a 2D material such as graphene on another 2D material with a small twist angle or from the lattice mismatch of 2D heterostructures. We present a continuum model for the elastic energy of these bilayer moiré structures that includes an intralayer elastic energy and an interlayer misfit energy that is minimized at two stackings (disregistries). We show by theory and computation that the displacement field that minimizes the global elastic energy subject to a global boundary constraint gives large alternating regions of one of the two energy-minimizing stackings separated by domain walls.

We derive a model for the domain wall structure from the continuum bilayer energy and give a rigorous asymptotic estimate for the structure. We also give an improved estimate for the \(L^{2}\)-norm of the gradient on the moiré unit cell for twisted bilayers that scales at most inversely linearly with the twist angle, a result which is consistent with the formation of one-dimensional domain walls with a fixed width around triangular domains at very small twist angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Note that in [1] the GSFE profile across the domain wall is approximated by the sine-Gordon potential \(\Phi (\Delta u) = \frac{V_{\text{SP}}}{2} (1 - \cos (2\pi \Delta u))\) for \(0 \leqslant \Delta u \leqslant 1\) allowing for an explicit solution, and a different normalization was used with \(k = \Phi [0] - \Phi _{\min}\) the saddle point energy, resulting in a slightly different expression for the thickness of the domain wall.

References

  1. Alden, J.S., Tsen, A.W., Huang, P.Y., Hovden, R., Brown, L., Park, J., Muller, D.A., McEuen, P.L.: Strain solitons and topological defects in bilayer graphene. Proc. Natl. Acad. Sci. USA 110(28), 11256–11260 (2013)

    Article  Google Scholar 

  2. Bistritzer, R., MacDonald, A.H.: Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA 108(30), 12233–12237 (2011)

    Article  Google Scholar 

  3. Cancès, E., Cazeaux, P., Luskin, M.: Generalized Kubo formulas for the transport properties of incommensurate 2D atomic heterostructures. J. Math. Phys. 58, 063502 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, Y., Fatemi, V., Demir, A., Fang, S., Tomarken, S.L., Luo, J.Y., Sanchez-Yamagishi, J.D., Watanabe, K., Taniguchi, T., Kaxiras, E., Ashoori, R.C., Jarillo-Herrero, P.: Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556(7699), 80–84 (2018)

    Article  Google Scholar 

  5. Cao, Y., Fatemi, V., Fang, S., Watanabe, K., Taniguchi, T., Kaxiras, E., Jarillo-Herrero, P.: Unconventional superconductivity in magic-angle graphene superlattices. Nature 556(7699), 43–50 (2018)

    Article  Google Scholar 

  6. Carr, S., Massatt, D., Torrisi, S.B., Cazeaux, P., Luskin, M., Kaxiras, E.: Relaxation and domain formation in incommensurate 2D heterostructures. Phys. Rev. B 98, 224102 (2018). (7 pp)

    Article  Google Scholar 

  7. Cazeaux, P., Luskin, M., Massatt, D.: Energy minimization of two dimensional incommensurate heterostructures. Arch. Ration. Mech. Anal. 235(2), 1289–1325 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dai, S., Xiang, Y., Srolovitz, D.J.: Structure and energetics of interlayer dislocations in bilayer graphene. Phys. Rev. B 93(8), 085410 (2016)

    Article  Google Scholar 

  9. Dai, S., Xiang, Y., Srolovitz, D.J.: Twisted bilayer graphene: Moiré with a twist. Nano Lett. 16(9), 5923–5927 (2016)

    Article  Google Scholar 

  10. Engelke, R., Yoo, H., Carr, S., Xu, K., Cazeaux, P., Allen, R., Mier Valdivia, A., Luskin, M., Kaxiras, E., Kim, M., Hoon Han, J., Kim, P.: Topological nature of dislocation networks in two-dimensional moiré materials. Phys. Rev. B 107, 125413 (2023)

    Article  Google Scholar 

  11. Etter, S., Massatt, D., Luskin, M., Ortner, C.: Modeling and computation of Kubo conductivity for 2D incommensurate bilayers. Multiscale Model. Simul. 18, 1525–1564 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jendrej, J., Kowalczyk, M., Lawrie, A.: Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line. Duke Math. J. 171, 3643–3705 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. Massatt, D., Carr, S., Luskin, M.: Electronic observables for relaxed bilayer 2D heterostructures in momentum space. (2021). arXiv:2109.15296

  14. Massatt, D., Carr, S., Luskin, M., Ortner, C.: Incommensurate heterostructures in momentum space. Multiscale Model. Simul. 16, 429–451 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Massatt, D., Luskin, M., Ortner, C.: Electronic density of states for incommensurate layers. Multiscale Model. Simul. 15, 476–499 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sinner, A., Pantaleón, P.A., Guinea, F.: Strain induced quasi-unidimensional channels in twisted moiré lattices (2022). arXiv:2210.07262

  17. Walet, N.R., Guinea, F.: The emergence of one-dimensional channels in marginal-angle twisted bilayer graphene. 2D Mater. 7(1), 015023 (2019)

    Article  Google Scholar 

  18. Watson, A.B., Kong, T., MacDonald, A.H., Luskin, M.: Bistritzer-MacDonald dynamics in twisted bilayer graphene. J. Math. Phys. 64, 031502 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yoo, H., Engelke, R., Carr, S., Fang, S., Zhang, K., Cazeaux, P., Hyun Sung, S., Hovden, R., Tsen, A.W., Taniguchi, T., Watanabe, K., Yi, G.-C., Kim, M., Luskin, M., Tadmor, E.B., Kaxiras, E., Kim, P.: Atomic and electronic reconstruction at van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019)

    Article  Google Scholar 

  20. Zhou, S., Han, J., Dai, S., Sun, J., Srolovitz, D.J.: Van der waals bilayer energetics: Generalized stacking-fault energy of graphene, boron nitride, and graphene/boron nitride bilayers. Phys. Rev. B 92, 155438 (2015)

    Article  Google Scholar 

  21. Zhu, Z., Cazeaux, P., Luskin, M., Kaxiras, E.: Modeling mechanical relaxation in incommensurate trilayer van der Waals heterostructures. Phys. Rev. B 101, 224107 (2020). (14 pp)

    Article  Google Scholar 

Download references

Funding

PC’s research was supported in part by National Science Foundation Award DMS-189220 and Simons Collaboration Grants for Mathematicians No. 966604. DC’s research was supported in part by National Science Foundation Award DMS-1906129. RE’s and PK’s research was supported in part by National Science Foundation Award DMREF Award No. 1922165. ML’s research was supported in part by National Science Foundation Award DMREF Award No. 1922165 and Simons Targeted Grant Award No. 896630.

Author information

Authors and Affiliations

Authors

Contributions

P.C. and M.L. wrote the main manuscript text, D.C. and P.C. did the numerical simulations, and R.E. and P.K. did the experiments.

Corresponding author

Correspondence to Mitchell Luskin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cazeaux, P., Clark, D., Engelke, R. et al. Relaxation and Domain Wall Structure of Bilayer Moiré Systems. J Elast 154, 443–466 (2023). https://doi.org/10.1007/s10659-023-10013-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-023-10013-0

Keywords

Mathematics Subject Classification

Navigation