Skip to main content
Log in

Advances in protein glycosylation and its role in tissue repair and regeneration

  • Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

After tissue damage, a series of molecular and cellular events are initiated to promote tissue repair and regeneration to restore its original structure and function. These events include inter-cell communication, cell proliferation, cell migration, extracellular matrix differentiation, and other critical biological processes. Glycosylation is the crucial conservative and universal post-translational modification in all eukaryotic cells [1], with influential roles in intercellular recognition, regulation, signaling, immune response, cellular transformation, and disease development. Studies have shown that abnormally glycosylation of proteins is a well-recognized feature of cancer cells, and specific glycan structures are considered markers of tumor development. There are many studies on gene expression and regulation during tissue repair and regeneration. Still, there needs to be more knowledge of complex carbohydrates’ effects on tissue repair and regeneration, such as glycosylation. Here, we present a review of studies investigating protein glycosylation in the tissue repair and regeneration process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(adapted from Divya Thomas [120] et al.). Nucleoside diphosphate or monophosphate sugars are precursors for glycoprotein biosynthesis. Most cell surface and secreted proteins are pre-synthesized inside the cavity of the ER, with fractional glycosylated proteins entering the Golgi to undergo deeper workup or modification, followed by the distribution of fully glycosylated proteins to individual targets. The composition and functionalities of the delivered carrier proteins determine the cellar features of glycans, and glycosylated proteins play critical roles in cell adhesion, cells contact and messaging, integrin regulation, pathogen identification and interaction, and modulation of immune responses

Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data that support the findings of this study are included in this manuscript. The manuscript is not under consideration elsewhere for publication while being considered by the journal.

Abbreviations

CDG:

Congenital disorders of glycosylation

ECM:

Extracellular matrix

ER:

Endoplasmic reticulum

GPI:

Glycosylphosphatidyl inositol anchored linkage

EGF:

Epidermal growth factor

HGF:

Hepatocyte growth factor

TGF-β:

Transforming growth factor Beta

PSGL-1:

P-selectin glycoprotein ligand-1

Fuc:

Fucose

Man:

Mannose

Gal:

Galactose

SA:

Sialic acid

GlcNAc:

N-acetylglucosamine

GalNac:

N-acetylgalactosamine

Asn:

Asparagine

Ser:

Serine

Thr:

Threonine

DDR-2:

discoid domain receptor 2

OST:

Oligosaccharyltransferase

TGF-β:

Transforming growth factorβ

Pgant4:

Polypeptide N-Acetylgalactosaminyltransferase 4

UDP:

Uridine diphosphate

AD:

Alzheimer’s disease

Aβ:

Amyloid β-peptide

APP:

Amyloid precursor protein

IgG:

Immunoglobulin G

FUT:

Fucosyltransferase

EGFR:

Epidermal growth factor receptor

PTM:

Post-translational modification

OGT:

O-GlcNAc transferase

OGA:

O-GlcNAcase

GAGs:

Glycosaminoglycans

HA:

Hyaluronic acid

CS:

Chondroitin sulfate

DS:

Dermatan sulfate

GlcAc:

Glucuronic acid

AIDs:

Autoimmune diseases

HCLC:

High-performance liquid chromatography

UPLC:

Ultra-performance liquid chromatography

GC:

Gas chromatography

LC:

Liquid chromatography

ROS:

Reactive oxygen species

VEGF:

Vascular endothelial growth factor

PDGF:

Platelet derived growth factor

AEC:

Apical epidermal cap

References

  1. Defaus, S., Gupta, P., Andreu, D., Gutiérrez-Gallego, R.: Mammalian protein glycosylation–structure versus function. Analyst. 139(12), 2944–2967 (2014)

    Article  CAS  PubMed  Google Scholar 

  2. Stowell, S.R., Ju, T., Cummings, R.D.: Protein glycosylation in cancer. Annu. Rev. Pathol. 10, 473–510 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hossler, P.: Protein glycosylation control in mammalian cell culture: Past precedents and contemporary prospects. Adv. Biochem. Eng. Biotechnol. 127, 187–219 (2012)

    CAS  PubMed  Google Scholar 

  4. Levy-Adam, F., Ilan, N., Vlodavsky, I.: Tumorigenic and adhesive properties of heparanase. Semin Cancer Biol. 20(3), 153–160 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Berger, M., Kaup, M., Blanchard, V.: Protein glycosylation and its impact on biotechnology. Adv. Biochem. Eng. Biotechnol. 127, 165–185 (2012)

    CAS  PubMed  Google Scholar 

  6. Rodrigues, J.G., Balmaña, M., Macedo, J.A., Poças, J., Fernandes, Ã., de-Freitas-Junior, J.C.M., Pinho, S.S., Gomes, J., Magalhães, A., Gomes, C., Mereiter, S., Reis, C.A.: Glycosylation in cancer: Selected roles in tumour progression, immune modulation and metastasis. Cell. Immunol. 333, 46–57 (2018)

    Article  CAS  PubMed  Google Scholar 

  7. Pinho, S.S., Reis, C.A.: Glycosylation in cancer: Mechanisms and clinical implications. Nat. Rev. Cancer. 15(9), 540–555 (2015)

    Article  CAS  PubMed  Google Scholar 

  8. Mehta, A., Herrera, H., Block, T.: Glycosylation and liver cancer. Adv. Cancer Res. 126, 257–279 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Freeze, H.H., Aebi, M.: Altered glycan structures: The molecular basis of congenital disorders of glycosylation. Curr. Opin. Struct. Biol. 15(5), 490–498 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. Ohtsubo, K., Marth, J.D.: Glycosylation in cellular mechanisms of health and disease. Cell. 126(5), 855–867 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. Zhou, X., Motta, F., Selmi, C., Ridgway, W.M., Gershwin, M.E., Zhang, W.: Antibody glycosylation in autoimmune diseases. Autoimmun. Rev. 20(5), 102804 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Laflamme, M.A., Murry, C.E.: Heart regeneration. Nature. 473(7347), 326–335 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yagi, S., Hirata, M., Miyachi, Y., Uemoto, S.: Liver regeneration after Hepatectomy and partial liver transplantation. Int. J. Mol. Sci. 21, 21 (2020)

    Article  Google Scholar 

  14. Uzarski, J.S., Xia, Y., Belmonte, J.C.I., Wertheim, J.A.: New strategies in kidney regeneration and tissue engineering. Curr. Opin. Nephrol. Hypertens. 23(4), 399–405 (2014)

    Article  CAS  PubMed  Google Scholar 

  15. Stabler, C.T., Morrisey, E.E.: Developmental pathways in lung regeneration. Cell. Tissue Res. 367(3), 677–685 (2017)

    Article  CAS  PubMed  Google Scholar 

  16. Läubli, H., Borsig, L.: Altered cell adhesion and glycosylation promote Cancer Immune suppression and metastasis. Front. Immunol. 10, 2120 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang, L., Ten Hagen, K.G.: The cellular microenvironment and cell adhesion: A role for O-glycosylation. Biochem. Soc. Trans. 39(1), 378–382 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fernández-Ponce, C., Geribaldi-Doldán, N., Sánchez-Gomar, I., Quiroz, R.N., Ibarra, L.A., Escorcia, L.G., Fernández-Cisnal, R., Martinez, G.A., García-Cózar, F., Quiroz, E.N.: The role of Glycosyltransferases in Colorectal Cancer. Int. J. Mol. Sci. 22, 11 (2021)

    Article  Google Scholar 

  19. Shimizu, T., Kato, Y., Sakai, Y., Hisamoto, N., Matsumoto, K.: -Glycosylation of the Discoidin Domain receptor is required for Axon Regeneration in. Genetics. 213(2), 491–500 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pei, W., Huang, S.C., Xu, L., Pettie, K., Ceci, M.L., Sánchez, M., Allende, M.L., Burgess, S.M.: Loss of Mgat5a-mediated -glycosylation stimulates regeneration in zebrafish. Cell. Regen. 5, 3 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cooke, J.P.: Inflammation and its role in regeneration and repair. Circ. Res. 124(8), 1166–1168 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, J., Tan, J., Martino, M.M., Lui, K.O.: Regulatory T-Cells: Potential Regulator of tissue repair and regeneration. Front. Immunol. 9, 585 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wynn, T.A., Vannella, K.M.: Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 44(3), 450–462 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sica, A., Mantovani, A.: Macrophage plasticity and polarization: In vivo veritas. J. Clin. Invest. 122(3), 787–795 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reinke, J.M., Sorg, H.: Wound repair and regeneration. Eur. Surg. Res. 49(1), 35–43 (2012)

    Article  CAS  PubMed  Google Scholar 

  26. Eming, S.A., Krieg, T., Davidson, J.M.: Inflammation in wound repair: Molecular and cellular mechanisms. J. Invest. Dermatol. 127(3), 514–525 (2007)

    Article  CAS  PubMed  Google Scholar 

  27. Sader, F., Denis, J.F., Roy, S.: Tissue regeneration in dentistry: Can salamanders provide insight? Oral Dis. 24(4), 509–517 (2018)

    Article  CAS  PubMed  Google Scholar 

  28. Reddien, P.W.: The Cellular and molecular basis for Planarian Regeneration. Cell. 175(2), 327–345 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Poss, K.D., Wilson, L.G., Keating, M.T.: Heart regeneration in zebrafish. Science. 298(5601), 2188–2190 (2002)

    Article  CAS  PubMed  Google Scholar 

  30. Dwaraka, V.B., Voss, S.R.: Towards comparative analyses of salamander limb regeneration. J. Exp. Zool. B Mol. Dev. Evol. 336(2), 129–144 (2021)

    Article  PubMed  Google Scholar 

  31. Michalopoulos, G.K., Bhushan, B.: Liver regeneration: Biological and pathological mechanisms and implications. Nat. Rev. Gastroenterol. Hepatol. 18(1), 40–55 (2021)

    Article  PubMed  Google Scholar 

  32. Brockes, J.P., Kumar, A.: Comparative aspects of animal regeneration. Annu. Rev. Cell. Dev. Biol. 24, 525–549 (2008)

    Article  CAS  PubMed  Google Scholar 

  33. Jopling, C., Sleep, E., Raya, M., Martí, M., Raya, A., Izpisúa Belmonte, J.C.: Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature. 464(7288), 606–609 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chera, S., Ghila, L., Dobretz, K., Wenger, Y., Bauer, C., Buzgariu, W., Martinou, J.-C., Galliot, B.: Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration. Dev. Cell. 17(2), 279–289 (2009)

    Article  CAS  PubMed  Google Scholar 

  35. Sen, C.K., Ghatak, S.: miRNA control of tissue repair and regeneration. Am. J. Pathol. 185(10), 2629–2640 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Süntar, I., Çetinkaya, S., Panieri, E., Saha, S., Buttari, B., Profumo, E., Saso, L.: Regulatory Role of Nrf2 Signaling Pathway in Wound Healing Process.Molecules26 (9). (2021)

  37. Sun, R., Kim, A.M.J., Lim, S.-O.: Glycosylation of Immune Receptors in Cancer.Cells10 (5). (2021)

  38. Oliveira-Ferrer, L., Legler, K., Milde-Langosch, K.: Role of protein glycosylation in cancer metastasis. Semin Cancer Biol. 44, 141–152 (2017)

    Article  CAS  PubMed  Google Scholar 

  39. Wang, R., Wang, G.: Protein modification and autophagy activation. Adv. Exp. Med. Biol. 1206, 237–259 (2019)

    Article  CAS  PubMed  Google Scholar 

  40. Apweiler, R., Hermjakob, H., Sharon, N.: On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta. 1473(1), 4–8 (1999)

    Article  CAS  PubMed  Google Scholar 

  41. Barb, A.W., Prestegard, J.H.: NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic. Nat. Chem. Biol. 7(3), 147–153 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bowden, T.A., Baruah, K., Coles, C.H., Harvey, D.J., Yu, X., Song, B.-D., Stuart, D.I., Aricescu, A.R., Scanlan, C.N., Jones, E.Y., Crispin, M.: Chemical and structural analysis of an antibody folding intermediate trapped during glycan biosynthesis. J. Am. Chem. Soc. 134(42), 17554–17563 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gorelik, E., Galili, U., Raz, A.: On the role of cell surface carbohydrates and their binding proteins (lectins) in tumor metastasis. Cancer Metastasis Rev. 20(3–4), 245–277 (2001)

    Article  CAS  PubMed  Google Scholar 

  44. Yang, S., Cui, M., Liu, Q., Liao, Q.: Glycosylation of immunoglobin G in tumors: Function, regulation and clinical implications. Cancer Lett. 549, 215902 (2022)

    Article  CAS  PubMed  Google Scholar 

  45. Schjoldager, K.T., Narimatsu, Y., Joshi, H.J., Clausen, H.: Global view of human protein glycosylation pathways and functions. Nat. Rev. Mol. Cell. Biol. 21(12), 729–749 (2020)

    Article  CAS  PubMed  Google Scholar 

  46. Schäffer, C., Graninger, M., Messner, P.: Prokaryotic glycosylation. Proteomics. 1(2), 248–261 (2001)

    Article  PubMed  Google Scholar 

  47. Walsh, M.T., Watzlawick, H., Putnam, F.W., Schmid, K., Brossmer, R.: Effect of the carbohydrate moiety on the secondary structure of beta 2-glycoprotein. I. Implications for the biosynthesis and folding of glycoproteins. Biochemistry. 29(26), 6250–6257 (1990)

    Article  CAS  PubMed  Google Scholar 

  48. Leavitt, R., Schlesinger, S., Kornfeld, S.: Impaired intracellular migration and altered solubility of nonglycosylated glycoproteins of vesicular stomatitis virus and Sindbis virus. J. Biol. Chem. 252(24), 9018–9023 (1977)

    Article  CAS  PubMed  Google Scholar 

  49. Wyss, D.F., Wagner, G.: The structural role of sugars in glycoproteins. Curr. Opin. Biotechnol. 7(4), 409–416 (1996)

    Article  CAS  PubMed  Google Scholar 

  50. Spiro, R.G.: Protein glycosylation: Nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology. 12(4), 43R–56R (2002)

    Article  CAS  PubMed  Google Scholar 

  51. Staudacher, E., Mucin-Type: O-Glycosylation in invertebrates. Molecules. 20(6), 10622–10640 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gill, D.J., Tham, K.M., Chia, J., Wang, S.C., Steentoft, C., Clausen, H., Bard-Chapeau, E.A., Bard, F.A.: Initiation of GalNAc-type O-glycosylation in the endoplasmic reticulum promotes cancer cell invasiveness. Proc. Natl. Acad. Sci. U S A. 110(34), E3152–E3161 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kariya, Y., Gu, J.: N-glycosylation of ß4 integrin controls the adhesion and motility of keratinocytes.PLoS One6 (11), e27084. (2011)

  54. Stanley, P., Okajima, T.: Roles of glycosylation in notch signaling. Curr. Top. Dev. Biol. 92, 131–164 (2010)

    Article  CAS  PubMed  Google Scholar 

  55. Hirata, T., Kizuka, Y.: N-Glycosylation.Adv Exp Med Biol1325. (2021)

  56. Isaji, T., Gu, J., Nishiuchi, R., Zhao, Y., Takahashi, M., Miyoshi, E., Honke, K., Sekiguchi, K., Taniguchi, N.: Introduction of bisecting GlcNAc into integrin alpha5beta1 reduces ligand binding and down-regulates cell adhesion and cell migration. J. Biol. Chem. 279(19), 19747–19754 (2004)

    Article  CAS  PubMed  Google Scholar 

  57. Isaji, T., Kariya, Y., Xu, Q., Fukuda, T., Taniguchi, N., Gu, J.: Functional roles of the bisecting GlcNAc in integrin-mediated cell adhesion. Methods Enzymol. 480, 445–459 (2010)

    Article  CAS  PubMed  Google Scholar 

  58. Conroy, L.R., Hawkinson, T.R., Young, L.E.A., Gentry, M.S., Sun, R.C.: Emerging roles of N-linked glycosylation in brain physiology and disorders. Trends Endocrinol. Metab. 32(12), 980–993 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, L., Ten Hagen, K.G.: O-Linked glycosylation in Drosophila melanogaster. Curr. Opin. Struct. Biol. 56, 139–145 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, W., Okajima, T., Takeuchi, H.: Significant Roles of Notch O-Glycosylation in Cancer.Molecules27 (6). (2022)

  61. Saha, A., Bello, D., Fernández-Tejada, A.: Advances in chemical probing of protein -GlcNAc glycosylation: Structural role and molecular mechanisms. Chem. Soc. Rev. 50(18), 10451–10485 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tran, D.T., Ten Hagen, K.G.: Mucin-type O-glycosylation during development. J. Biol. Chem. 288(10), 6921–6929 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. van der Laarse, S.A.M., Leney, A.C., Heck, A.J.R.: Crosstalk between phosphorylation and O-GlcNAcylation: Friend or foe. FEBS J. 285(17), 3152–3167 (2018)

    Article  PubMed  Google Scholar 

  64. Magalhães, A., Duarte, H.O., Reis, C.A.: The role of O-glycosylation in human disease. Mol. Aspects Med. 79, 100964 (2021)

    Article  PubMed  Google Scholar 

  65. Ferrer, C.M., Lynch, T.P., Sodi, V.L., Falcone, J.N., Schwab, L.P., Peacock, D.L., Vocadlo, D.J., Seagroves, T.N., Reginato, M.J.: O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway. Mol. Cell. 54(5), 820–831 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu, D., Jin, J., Qiu, Z., Liu, D., Luo, H.: Functional analysis of -GlcNAcylation in Cancer Metastasis. Front. Oncol. 10, 585288 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yang, X., Qian, K.: Protein O-GlcNAcylation: Emerging mechanisms and functions. Nat. Rev. Mol. Cell. Biol. 18(7), 452–465 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. de Haan, N., Falck, D., Wuhrer, M.: Monitoring of immunoglobulin N- and O-glycosylation in health and disease. Glycobiology. 30(4), 226–240 (2020)

    Article  PubMed  Google Scholar 

  69. Zhang, L., Zhang, Y., Hagen, K.G.T.: A mucin-type O-glycosyltransferase modulates cell adhesion during Drosophila development. J. Biol. Chem. 283(49), 34076–34086 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fardini, Y., Dehennaut, V., Lefebvre, T., Issad, T.: O-GlcNAcylation: A New Cancer Hallmark? Front. Endocrinol. (Lausanne). 4, 99 (2013)

    Article  PubMed  Google Scholar 

  71. Zhang, L., Syed, Z.A., van Dijk Härd, I., Lim, J.-M., Wells, L., Ten Hagen, K.G.: O-glycosylation regulates polarized secretion by modulating Tango1 stability. Proc. Natl. Acad. Sci. U S A. 111(20), 7296–7301 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tran, D.T., Zhang, L., Zhang, Y., Tian, E., Earl, L.A., Ten Hagen, K.G.: Multiple members of the UDP-GalNAc: Polypeptide N-acetylgalactosaminyltransferase family are essential for viability in Drosophila. J. Biol. Chem. 287(8), 5243–5252 (2012)

    Article  CAS  PubMed  Google Scholar 

  73. Nizet, V., Varki, A., Aebi, M., Lectins, M.: Hemagglutinins, Adhesins, and Toxins. In Essentials of Glycobiology, Varki, A.; Cummings, R. D.; Esko, J. D.; Stanley, P.; Hart, G. W.; Aebi, M.; Darvill, A. G.; Kinoshita, T.; Packer, N. H.; Prestegard, J. H.; Schnaar, R. L.; Seeberger, P. H., Eds. Cold Spring Harbor Laboratory Press Copyright 2015–2017 by The Consortium of Glycobiology Editors, La Jolla, California. All rights reserved.: Cold Spring Harbor (NY), ; pp 481 – 91. (2015)

  74. Aebi, M.: N-linked protein glycosylation in the ER. Biochim. Biophys. Acta. 1833(11), 2430–2437 (2013)

    Article  CAS  PubMed  Google Scholar 

  75. Radovani, B., Gudelj, I.: N-Glycosylation and inflammation; the Not-So-Sweet relation. Front. Immunol. 13, 893365 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Caramelo, J.J., Parodi, A.J.: A sweet code for glycoprotein folding. FEBS Lett. 589(22), 3379–3387 (2015)

    Article  CAS  PubMed  Google Scholar 

  77. Weerapana, E., Imperiali, B.: Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems.Glycobiology16 (6). (2006)

  78. Tannous, A., Pisoni, G.B., Hebert, D.N., Molinari, M.: N-linked sugar-regulated protein folding and quality control in the ER. Semin Cell. Dev. Biol. 41, 79–89 (2015)

    Article  CAS  PubMed  Google Scholar 

  79. Lewis, A.L., Kohler, J.J., Aebi, M., Lectins, M.: Hemagglutinins, Adhesins, and Toxins. In Essentials of Glycobiology, Varki, A.; Cummings, R. D.; Esko, J. D.; Stanley, P.; Hart, G. W.; Aebi, M.; Mohnen, D.; Kinoshita, T.; Packer, N. H.; Prestegard, J. H.; Schnaar, R. L.; Seeberger, P. H., Eds. Cold Spring Harbor Laboratory Press Copyright © 2022 The Consortium of Glycobiology Editors, La Jolla, California; published by Cold Spring Harbor Laboratory Press; doi: (2022). https://doi.org/10.1101/glycobiology.4e.37. All rights reserved.: Cold Spring Harbor (NY), ; pp 505 – 16

  80. McFarlane, H.E., Döring, A., Persson, S.: The cell biology of cellulose synthesis. Annu. Rev. Plant. Biol. 65, 69–94 (2014)

    Article  CAS  PubMed  Google Scholar 

  81. Mikolajczyk, K., Kaczmarek, R., Czerwinski, M.: How glycosylation affects glycosylation: The role of N-glycans in glycosyltransferase activity. Glycobiology. 30(12), 941–969 (2020)

    Article  CAS  PubMed  Google Scholar 

  82. Weinhold, B., Sellmeier, M., Schaper, W., Blume, L., Philippens, B., Kats, E., Bernard, U., Galuska, S.P., Geyer, H., Geyer, R., Worthmann, K., Schiffer, M., Groos, S., Gerardy-Schahn, R.: Münster-Kühnel, A. K., deficits in sialylation impair podocyte maturation. J. Am. Soc. Nephrol. 23(8), 1319–1328 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Parthasarathy, N., Spiro, R.G.: Isolation and characterization of the heparan sulfate proteoglycan of the bovine glomerular basement membrane. J. Biol. Chem. 259(20), 12749–12755 (1984)

    Article  CAS  PubMed  Google Scholar 

  84. Pestronk, A.: Chronic graft versus host myopathies: Noninflammatory, Multi-Tissue Pathology with Glycosylation Disorders. J. Neuropathol. Exp. Neurol. 79(1), 102–112 (2020)

    Article  CAS  PubMed  Google Scholar 

  85. Gu, J., Taniguchi, N.: Regulation of integrin functions by N-glycans. Glycoconj. J. 21, 1–2 (2004)

    Article  Google Scholar 

  86. Liu, C.-H., Hu, R.-H., Huang, M.-J., Lai, I.R., Chen, C.-H., Lai, H.-S., Wu, Y.-M., Huang, M.-C.: C1GALT1 promotes invasive phenotypes of hepatocellular carcinoma cells by modulating integrin β1 glycosylation and activity.PloS one9 (8), e94995. (2014)

  87. Lau, K.S., Partridge, E.A., Grigorian, A., Silvescu, C.I., Reinhold, V.N., Demetriou, M., Dennis, J.W.: Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell. 129(1), 123–134 (2007)

    Article  CAS  PubMed  Google Scholar 

  88. Ferreira, I.G., Pucci, M., Venturi, G., Malagolini, N., Chiricolo, M., Dall’Olio, F.: Glycosylation as a Main Regulator of Growth and Death Factor Receptors Signaling.International journal of molecular sciences19 (2). (2018)

  89. Byambaragchaa, M., Park, H.K., Kim, D.J., Lee, J.H., Kang, M.H., Min, K.S.: The N-Linked glycosylation site N191 is necessary for PKA Signal transduction in eel follicle-stimulating hormone receptor. Int. J. Mol. Sci. 23, 21 (2022)

    Article  Google Scholar 

  90. Thaysen-Andersen, M., Packer, N.H.: Site-specific glycoproteomics confirms that protein structure dictates formation of N-glycan type, core fucosylation and branching. Glycobiology. 22(11), 1440–1452 (2012)

    Article  CAS  PubMed  Google Scholar 

  91. Fernandez-Valdivia, R., Takeuchi, H., Samarghandi, A., Lopez, M., Leonardi, J., Haltiwanger, R.S., Jafar-Nejad, H.: Regulation of mammalian notch signaling and embryonic development by the protein O-glucosyltransferase Rumi. Development. 138(10), 1925–1934 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ilarregui, J.M., Croci, D.O., Bianco, G.A., Toscano, M.A., Salatino, M., Vermeulen, M.E., Geffner, J.R., Rabinovich, G.A.: Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat. Immunol. 10(9), 981–991 (2009)

    Article  CAS  PubMed  Google Scholar 

  93. Sperandio, M.: The expanding role of α2–3 sialylation for leukocyte trafficking in vivo. Ann. N Y Acad. Sci. 1253, 201–205 (2012)

    Article  CAS  PubMed  Google Scholar 

  94. Dias, A.M., Correia, A., Pereira, M.S., Almeida, C.R., Alves, I., Pinto, V., Catarino, T.A., Mendes, N., Leander, M., Oliva-Teles, M.T., Maia, L., Delerue-Matos, C., Taniguchi, N., Lima, M., Pedroto, I., Marcos-Pinto, R., Lago, P., Reis, C.A., Vilanova, M., Pinho, S.S.: Metabolic control of T cell immune response through glycans in inflammatory bowel disease. Proc. Natl. Acad. Sci. U S A. 115(20), E4651–E4660 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Verhelst, X., Dias, A.M., Colombel, J.-F., Vermeire, S., Van Vlierberghe, H., Callewaert, N., Pinho, S.S.: Protein Glycosylation as a Diagnostic and Prognostic Marker of Chronic Inflammatory Gastrointestinal and Liver Diseases.Gastroenterology158 (1). (2020)

  96. Alves, I., Vicente, M.M., Dias, A.M., Gaifem, J., Rodrigues, C., Campar, A., Pinho, S.S.: The role of glycosylation in Inflammatory Diseases. Adv. Exp. Med. Biol. 1325, 265–283 (2021)

    Article  CAS  PubMed  Google Scholar 

  97. Ley, K.: Functions of selectins. Results Probl. Cell. Differ. 33, 177–200 (2001)

    Article  CAS  PubMed  Google Scholar 

  98. Matsui, N.M., Borsig, L., Rosen, S.D., Yaghmai, M., Varki, A., Embury, S.H.: P-selectin mediates the adhesion of sickle erythrocytes to the endothelium. Blood. 98(6), 1955–1962 (2001)

    Article  CAS  PubMed  Google Scholar 

  99. Ghoshal, P., Rajendran, M., Odo, N., Ikuta, T.: Glycosylation inhibitors efficiently inhibit P-selectin-mediated cell adhesion to endothelial cells.PloS one9 (6), e99363. (2014)

  100. Geijtenbeek, T.B.H., van Vliet, S.J., Engering, A., t Hart, B.A., van Kooyk, Y.: Self- and nonself-recognition by C-type lectins on dendritic cells. Annu. Rev. Immunol. 22, 33–54 (2004)

    Article  CAS  PubMed  Google Scholar 

  101. Tecle, E., Gagneux, P.: Sugar-coated sperm: Unraveling the functions of the mammalian sperm glycocalyx. Mol. Reprod. Dev. 82(9), 635–650 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mengerink, K.J., Vacquier, V.D.: Glycobiology of sperm-egg interactions in deuterostomes. Glycobiology. 11(4), 37R–43R (2001)

    Article  CAS  PubMed  Google Scholar 

  103. Silipo, A., Erbs, G., Shinya, T., Dow, J.M., Parrilli, M., Lanzetta, R., Shibuya, N., Newman, M.-A., Molinaro, A.: Glyco-conjugates as elicitors or suppressors of plant innate immunity. Glycobiology. 20(4), 406–419 (2010)

    Article  CAS  PubMed  Google Scholar 

  104. Mazmanian, S.K., Liu, C.H., Tzianabos, A.O., Kasper, D.L.: An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 122(1), 107–118 (2005)

    Article  CAS  PubMed  Google Scholar 

  105. Moustafa, I., Connaris, H., Taylor, M., Zaitsev, V., Wilson, J.C., Kiefel, M.J., von Itzstein, M., Taylor, G.: Sialic acid recognition by Vibrio cholerae neuraminidase. J. Biol. Chem. 279(39), 40819–40826 (2004)

    Article  CAS  PubMed  Google Scholar 

  106. Bagdonaite, I., Wandall, H.H.: Global aspects of viral glycosylation. Glycobiology. 28(7), 443–467 (2018)

    Article  CAS  PubMed  Google Scholar 

  107. Chen, P.-C., Chuang, P.-K., Chen, C.-H., Chan, Y.-T., Chen, J.-R., Lin, S.-W., Ma, C., Hsu, T.-L., Wong, C.-H.: Role of N-linked glycans in the interactions of recombinant HCV envelope glycoproteins with cellular receptors. ACS Chem. Biol. 9(7), 1437–1443 (2014)

    Article  CAS  PubMed  Google Scholar 

  108. Cain, J.A., Dale, A.L., Niewold, P., Klare, W.P., Man, L., White, M.Y., Scott, N.E., Cordwell, S.J.: Proteomics reveals multiple phenotypes Associated with N-linked glycosylation in Campylobacter jejuni. Mol. Cell. Proteomics. 18(4), 715–734 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Latousakis, D., Juge, N.: How Sweet Are Our Gut Beneficial Bacteria? A Focus on Protein Glycosylation in Lactobacillus.International journal of molecular sciences19 (1). (2018)

  110. Anonsen, J.H., Vik, Ã., Egge-Jacobsen, W., Koomey, M.: An extended spectrum of target proteins and modification sites in the general O-linked protein glycosylation system in Neisseria gonorrhoeae. J. Proteome Res. 11(12), 5781–5793 (2012)

    Article  CAS  PubMed  Google Scholar 

  111. Suwandi, A., Galeev, A., Riedel, R., Sharma, S., Seeger, K., Sterzenbach, T., García Pastor, L., Boyle, E.C., Gal-Mor, O., Hensel, M., Casadesús, J., Baines, J.F., Grassl, G.A.: Std fimbriae-fucose interaction increases Salmonella-induced intestinal inflammation and prolongs colonization.PLoS Pathog15 (7), e1007915. (2019)

  112. Kobayashi, M., Lee, H., Nakayama, J., Fukuda, M.: Roles of gastric mucin-type O-glycans in the pathogenesis of Helicobacter pylori infection. Glycobiology. 19(5), 453–461 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Marceau, M., Forest, K., Béretti, J.L., Tainer, J., Nassif, X.: Consequences of the loss of O-linked glycosylation of meningococcal type IV pilin on piliation and pilus-mediated adhesion. Mol. Microbiol. 27(4), 705–715 (1998)

    Article  CAS  PubMed  Google Scholar 

  114. Elhenawy, W., Scott, N.E., Tondo, M.L., Orellano, E.G., Foster, L.J., Feldman, M.F.: Protein O-linked glycosylation in the plant pathogen Ralstonia solanacearum. Glycobiology. 26(3), 301–311 (2016)

    CAS  PubMed  Google Scholar 

  115. Rossez, Y., Wolfson, E.B., Holmes, A., Gally, D.L., Holden, N.J.: Bacterial flagella: Twist and stick, or dodge across the kingdoms.PLoS Pathog11 (1), e1004483. (2015)

  116. Tan, F.Y.Y., Tang, C.M., Exley, R.M.: Sugar coating: Bacterial protein glycosylation and host-microbe interactions. Trends Biochem. Sci. 40(7), 342–350 (2015)

    Article  CAS  PubMed  Google Scholar 

  117. Feng, T., Zhang, J., Chen, Z., Pan, W., Chen, Z., Yan, Y., Dai, J.: Glycosylation of viral proteins: Implication in virus-host interaction and virulence. Virulence. 13(1), 670–683 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Iwashkiw, J.A., Seper, A., Weber, B.S., Scott, N.E., Vinogradov, E., Stratilo, C., Reiz, B., Cordwell, S.J., Whittal, R., Schild, S., Feldman, M.F.: Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation.PLoS Pathog8 (6), e1002758. (2012)

  119. Hanuszkiewicz, A., Pittock, P., Humphries, F., Moll, H., Rosales, A.R., Molinaro, A., Moynagh, P.N., Lajoie, G.A., Valvano, M.A.: Identification of the flagellin glycosylation system in Burkholderia cenocepacia and the contribution of glycosylated flagellin to evasion of human innate immune responses. J. Biol. Chem. 289(27), 19231–19244 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Thomas, D., Rathinavel, A.K., Radhakrishnan, P.: Altered glycosylation in cancer: A promising target for biomarkers and therapeutics. Biochim. et Biophys. acta Reviews cancer. 1875(1), 188464 (2021)

    Article  CAS  Google Scholar 

  121. Van Cauwenberghe, C., Van Broeckhoven, C., Sleegers, K.: The genetic landscape of Alzheimer disease: Clinical implications and perspectives. Genet. Med. 18(5), 421–430 (2016)

    Article  PubMed  Google Scholar 

  122. Butterfield, D.A., Owen, J.B.: Lectin-affinity chromatography brain glycoproteomics and Alzheimer disease: Insights into protein alterations consistent with the pathology and progression of this dementing disorder. Proteom. Clin Appl. 5(1–2), 50–56 (2011)

    Article  CAS  Google Scholar 

  123. Kizuka, Y., Kitazume, S., Fujinawa, R., Saito, T., Iwata, N., Saido, T.C., Nakano, M., Yamaguchi, Y., Hashimoto, Y., Staufenbiel, M., Hatsuta, H., Murayama, S., Manya, H., Endo, T., Taniguchi, N.: An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer’s disease. EMBO Mol. Med. 7(2), 175–189 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kizuka, Y., Kitazume, S., Taniguchi, N.: N-glycan and Alzheimer’s disease. Biochim. Biophys. Acta Gen. Subj. 1861(10), 2447–2454 (2017)

    Article  CAS  PubMed  Google Scholar 

  125. Halim, A., Brinkmalm, G., Rüetschi, U., Westman-Brinkmalm, A., Portelius, E., Zetterberg, H., Blennow, K., Larson, G., Nilsson, J.: Site-specific characterization of threonine, serine, and tyrosine glycosylations of amyloid precursor protein/amyloid beta-peptides in human cerebrospinal fluid. Proc. Natl. Acad. Sci. U S A. 108(29), 11848–11853 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Li, X., Lu, F., Wang, J.-Z., Gong, C.-X.: Concurrent alterations of O-GlcNAcylation and phosphorylation of tau in mouse brains during fasting. Eur. J. Neurosci. 23(8), 2078–2086 (2006)

    Article  PubMed  Google Scholar 

  127. Broncel, M., Falenski, J.A., Wagner, S.C., Hackenberger, C.P.R., Koksch, B.: How post-translational modifications influence amyloid formation: A systematic study of phosphorylation and glycosylation in model peptides. Chem. (Weinheim der Bergstrasse Germany). 16(26), 7881–7888 (2010)

    CAS  Google Scholar 

  128. Barboza, M., Solakyildirim, K., Knotts, T.A., Luke, J., Gareau, M.G., Raybould, H.E., Lebrilla, C.B.: Region-specific cell membrane N-Glycome of functional mouse brain areas revealed by nanoLC-MS analysis. Mol. Cell. Proteomics. 20, 100130 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. 2: Classification and diagnosis of diabetes. Diabetes Care. 44(Suppl 1), S15–S33 (2021)

    Google Scholar 

  130. Ziegler, A.G., Rewers, M., Simell, O., Simell, T., Lempainen, J., Steck, A., Winkler, C., Ilonen, J., Veijola, R., Knip, M., Bonifacio, E., Eisenbarth, G.S.: Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA. 309(23), 2473–2479 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. DeFronzo, R.A., Ferrannini, E., Groop, L., Henry, R.R., Herman, W.H., Holst, J.J., Hu, F.B., Kahn, C.R., Raz, I., Shulman, G.I., Simonson, D.C., Testa, M.A., Weiss, R.: Type 2 diabetes mellitus. Nat. Reviews Disease Primers. 1(1), 15019 (2015)

    Article  PubMed  Google Scholar 

  132. Bermingham, M.L., Colombo, M., McGurnaghan, S.J., Blackbourn, L.A.K., Vučković, F., Pučić Baković, M., Trbojević-Akmačić, I., Lauc, G., Agakov, F., Agakova, A.S., Hayward, C., Klarić, L., Palmer, C.N.A., Petrie, J.R., Chalmers, J., Collier, A., Green, F., Lindsay, R.S., Macrury, S., McKnight, J.A., Patrick, A.W., Thekkepat, S., Gornik, O., McKeigue, P.M., Colhoun, H.M.: N-Glycan Profile and kidney disease in type 1 diabetes. Diabetes Care. 41(1), 79–87 (2018)

    Article  CAS  PubMed  Google Scholar 

  133. Keser, T., Gornik, I., Vučković, F., Selak, N., Pavić, T., Lukić, E., Gudelj, I., Gašparović, H., Biočina, B., Tilin, T., Wennerström, A., Männistö, S., Salomaa, V., Havulinna, A., Wang, W., Wilson, J.F., Chaturvedi, N., Perola, M., Campbell, H., Lauc, G., Gornik, O.: Increased plasma N-glycome complexity is associated with higher risk of type 2 diabetes. Diabetologia. 60(12), 2352–2360 (2017)

    Article  CAS  PubMed  Google Scholar 

  134. Lee, C.-L., Chiu, P.C.N., Pang, P.-C., Chu, I.K., Lee, K.-F., Koistinen, R., Koistinen, H., Seppälä, M., Morris, H.R., Tissot, B., Panico, M., Dell, A., Yeung, W.S.: B., Glycosylation failure extends to glycoproteins in gestational diabetes mellitus: Evidence from reduced α2–6 sialylation and impaired immunomodulatory activities of pregnancy-related glycodelin-A. Diabetes. 60(3), 909–917 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rudman, N., Gornik, O., Lauc, G.: Altered N-glycosylation profiles as potential biomarkers and drug targets in diabetes. FEBS Lett. 593(13), 1598–1615 (2019)

    Article  CAS  PubMed  Google Scholar 

  136. Ohtsubo, K., Takamatsu, S., Gao, C., Korekane, H., Kurosawa, T.M., Taniguchi, N.: N-Glycosylation modulates the membrane sub-domain distribution and activity of glucose transporter 2 in pancreatic beta cells. Biochem. Biophys. Res. Commun. 434(2), 346–351 (2013)

    Article  CAS  PubMed  Google Scholar 

  137. Lodge, E.K., Bell, J.D., Roloff, E.M., Hamilton, K.E., Louters, L.L., Looyenga, B.D.: Pharmacologic inhibition of N-linked glycan trimming with kifunensine disrupts GLUT1 trafficking and glucose uptake. Biochimie. 174, 18–29 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cvetko, A., Mangino, M., Tijardović, M., Kifer, D., Falchi, M., Keser, T., Perola, M., Spector, T.D., Lauc, G., Menni, C., Gornik, O.: Plasma N-glycome shows continuous deterioration as the diagnosis of insulin resistance approaches.BMJ Open Diabetes Res Care9 (1). (2021)

  139. Kerbel, R.S.: Tumor angiogenesis: Past, present and the near future. Carcinogenesis. 21(3), 505–515 (2000)

    Article  CAS  PubMed  Google Scholar 

  140. Chiang, A.C., Massagué, J.: Molecular basis of metastasis. N Engl. J. Med. 359(26), 2814–2823 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Binder, M.J., McCoombe, S., Williams, E.D., McCulloch, D.R., Ward, A.C.: The extracellular matrix in cancer progression: Role of hyalectan proteoglycans and ADAMTS enzymes. Cancer Lett. 385, 55–64 (2017)

    Article  CAS  PubMed  Google Scholar 

  142. MacDougall, J.R., Matrisian, L.M.: Contributions of tumor and stromal matrix metalloproteinases to tumor progression, invasion and metastasis. Cancer Metastasis Rev. 14(4), 351–362 (1995)

    Article  CAS  PubMed  Google Scholar 

  143. Stamenkovic, I.: Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol. 10(6), 415–433 (2000)

    Article  CAS  PubMed  Google Scholar 

  144. Joshi, M., Patil, R.: Estimation and comparative study of serum total sialic acid levels as tumor markers in oral cancer and precancer. J. Cancer Res. Ther. 6(3), 263–266 (2010)

    Article  PubMed  Google Scholar 

  145. Oztürk, L.K., Emekli-Alturfan, E., Kaşikci, E., Demir, G., Yarat, A.: Salivary total sialic acid levels increase in breast cancer patients: A preliminary study. Med. Chem. 7(5), 443–447 (2011)

    Article  PubMed  Google Scholar 

  146. Brooks, S.A., Carter, T.M., Royle, L., Harvey, D.J., Fry, S.A., Kinch, C., Dwek, R.A., Rudd, P.M.: Altered glycosylation of proteins in cancer: what is the potential for new anti-tumour strategies.Anticancer Agents Med Chem8 (1). (2008)

  147. Abd Hamid, U.M., Royle, L., Saldova, R., Radcliffe, C.M., Harvey, D.J., Storr, S.J., Pardo, M., Antrobus, R., Chapman, C.J., Zitzmann, N., Robertson, J.F., Dwek, R.A., Rudd, P.M.: A strategy to reveal potential glycan markers from serum glycoproteins associated with breast cancer progression. Glycobiology. 18(12), 1105–1118 (2008)

    Article  CAS  PubMed  Google Scholar 

  148. Wu, C., Guo, X., Wang, W., Wang, Y., Shan, Y., Zhang, B., Song, W., Ma, S., Ge, J., Deng, H., Zhu, M.: N-Acetylgalactosaminyltransferase-14 as a potential biomarker for breast cancer by immunohistochemistry. BMC Cancer. 10, 123 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  149. Xu, Y., Chang, R., Xu, F., Gao, Y., Yang, F., Wang, C., Xiao, J., Su, Z., Bi, Y., Wang, L., Zha, X.: N-Glycosylation at asn 402 stabilizes N-Cadherin and promotes cell-cell adhesion of Glioma cells. J. Cell. Biochem. 118(6), 1423–1431 (2017)

    Article  CAS  PubMed  Google Scholar 

  150. Lin, S., Kemmner, W., Grigull, S., Schlag, P.M.: Cell surface alpha 2,6 sialylation affects adhesion of breast carcinoma cells. Exp. Cell. Res. 276(1), 101–110 (2002)

    Article  CAS  PubMed  Google Scholar 

  151. Marcos, N.T., Bennett, E.P., Gomes, J., Magalhaes, A., Gomes, C., David, L., Dar, I., Jeanneau, C., DeFrees, S., Krustrup, D., Vogel, L.K., Kure, E.H., Burchell, J., Taylor-Papadimitriou, J., Clausen, H., Mandel, U., Reis, C.A.: ST6GalNAc-I controls expression of sialyl-Tn antigen in gastrointestinal tissues. Front. Biosci. (Elite Ed). 3(4), 1443–1455 (2011)

    PubMed  Google Scholar 

  152. Robinson, D.R., Wu, Y.M., Lin, S.F.: The protein tyrosine kinase family of the human genome. Oncogene. 19(49), 5548–5557 (2000)

    Article  CAS  PubMed  Google Scholar 

  153. Hubbard, S.R.: Juxtamembrane autoinhibition in receptor tyrosine kinases. Nat. Rev. Mol. Cell. Biol. 5(6), 464–471 (2004)

    Article  CAS  PubMed  Google Scholar 

  154. Gomes, C., Osório, H., Pinto, M.T., Campos, D., Oliveira, M.J., Reis, C.A.: Expression of ST3GAL4 leads to SLe(x) expression and induces c-Met activation and an invasive phenotype in gastric carcinoma cells.PloS one8 (6), e66737. (2013)

  155. Mereiter, S., Magalhães, A., Adamczyk, B., Jin, C., Almeida, A., Drici, L., Ibáñez-Vea, M., Gomes, C., Ferreira, J.A., Afonso, L.P., Santos, L.L., Larsen, M.R., Kolarich, D., Karlsson, N.G., Reis, C.A.: Glycomic analysis of gastric carcinoma cells discloses glycans as modulators of RON receptor tyrosine kinase activation in cancer. Biochim. Biophys. Acta. 1860(8), 1795–1808 (2016)

    Article  CAS  PubMed  Google Scholar 

  156. Köhler, S., Ullrich, S., Richter, U., Schumacher, U.: E-/P-selectins and colon carcinoma metastasis: First in vivo evidence for their crucial role in a clinically relevant model of spontaneous metastasis formation in the lung. Br. J. Cancer. 102(3), 602–609 (2010)

    Article  PubMed  Google Scholar 

  157. Stübke, K., Wicklein, D., Herich, L., Schumacher, U., Nehmann, N.: Selectin-deficiency reduces the number of spontaneous metastases in a xenograft model of human breast cancer. Cancer Lett. 321(1), 89–99 (2012)

    Article  PubMed  Google Scholar 

  158. Heldin, C.-H., Moustakas, A.: Signaling receptors for TGF-β family members. Cold Spring Harb Perspect Biol. 8, 8 (2016)

    Article  Google Scholar 

  159. Derynck, R., Muthusamy, B.P., Saeteurn, K.Y.: Signaling pathway cooperation in TGF-β-induced epithelial-mesenchymal transition. Curr. Opin. Cell. Biol. 31, 56–66 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lin, W.-L., Lin, Y.-S., Shi, G.-Y., Chang, C.-F., Wu, H.-L.: Lewisy promotes migration of oral cancer cells by glycosylation of epidermal growth factor receptor.PloS one10 (3), e0120162. (2015)

  161. Miyoshi, E., Moriwaki, K., Nakagawa, T.: Biological function of fucosylation in cancer biology. J. Biochem. 143(6), 725–729 (2008)

    Article  CAS  PubMed  Google Scholar 

  162. Peracaula, R., Tabarés, G., Royle, L., Harvey, D.J., Dwek, R.A., Rudd, P.M., de Llorens, R.: Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins. Glycobiology. 13(6), 457–470 (2003)

    Article  CAS  PubMed  Google Scholar 

  163. Höti, N., Yang, S., Hu, Y., Shah, P., Haffner, M.C., Zhang, H.: Overexpression of α (1,6) fucosyltransferase in the development of castration-resistant prostate cancer cells. Prostate Cancer Prostatic Dis. 21(1), 137–146 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  164. Liang, C., Fukuda, T., Isaji, T., Duan, C., Song, W., Wang, Y., Gu, J.: α1,6-Fucosyltransferase contributes to cell migration and proliferation as well as to cancer stemness features in pancreatic carcinoma. Biochim. Biophys. Acta Gen. Subj. 1865(6), 129870 (2021)

    Article  CAS  PubMed  Google Scholar 

  165. Wang, X., Chen, J., Li, Q.K., Peskoe, S.B., Zhang, B., Choi, C., Platz, E.A., Zhang, H.: Overexpression of α (1,6) fucosyltransferase associated with aggressive prostate cancer. Glycobiology. 24(10), 935–944 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Clark, D.J., Schnaubelt, M., Hoti, N., Hu, Y., Zhou, Y., Gooya, M., Zhang, H.: Impact of increased FUT8 expression on the extracellular vesicle proteome in prostate Cancer cells. J. Proteome Res. 19(6), 2195–2205 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Tu, C.-F., Wu, M.-Y., Lin, Y.-C., Kannagi, R., Yang, R.-B.: FUT8 promotes breast cancer cell invasiveness by remodeling TGF-β receptor core fucosylation. Breast Cancer Res. 19(1), 111 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  168. Angeloni, S., Ridet, J.L., Kusy, N., Gao, H., Crevoisier, F., Guinchard, S., Kochhar, S., Sigrist, H., Sprenger, N.: Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology. 15(1), 31–41 (2005)

    Article  CAS  PubMed  Google Scholar 

  169. Yi, C.-H., Weng, H.-L., Zhou, F.-G., Fang, M., Ji, J., Cheng, C., Wang, H., Liebe, R., Dooley, S., Gao, C.-F.: Elevated core-fucosylated IgG is a new marker for hepatitis B virus-related hepatocellular carcinoma.Oncoimmunology4 (12), e1011503. (2015)

  170. Syed, P., Gidwani, K., Kekki, H., Leivo, J., Pettersson, K., Lamminmäki, U.: Role of lectin microarrays in cancer diagnosis. Proteomics. 16(8), 1257–1265 (2016)

    Article  CAS  PubMed  Google Scholar 

  171. Zhang, L., Luo, S., Zhang, B.: The use of lectin microarray for assessing glycosylation of therapeutic proteins. mAbs. 8(3), 524–535 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bumgarner, R.: Overview of DNA microarrays: types, applications, and their future. Curr Protoc Mol Biol Chap. 22, Unit 22.1. (2013)

  173. Song, T., Aldredge, D., Lebrilla, C.B.: A method for In-Depth structural annotation of human serum Glycans that yields Biological Variations. Anal. Chem. 87(15), 7754–7762 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Pučić-Baković, M.: High-throughput analysis of the IgG N-Glycome by UPLC-FLR. Methods Mol. Biol. 1503, 21–29 (2017)

    Article  PubMed  Google Scholar 

  175. Eming, S.A., Hammerschmidt, M., Krieg, T., Roers, A.: Interrelation of immunity and tissue repair or regeneration. Semin Cell. Dev. Biol. 20(5), 517–527 (2009)

    Article  CAS  PubMed  Google Scholar 

  176. Maddaluno, L., Urwyler, C., Werner, S.: Fibroblast growth factors: Key players in regeneration and tissue repair. Development. 144(22), 4047–4060 (2017)

    Article  CAS  PubMed  Google Scholar 

  177. Tanaka, E.M., Reddien, P.W.: The cellular basis for animal regeneration. Dev. Cell. 21(1), 172–185 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Levin, M.: Bioelectric mechanisms in regeneration: Unique aspects and future perspectives. Semin Cell. Dev. Biol. 20(5), 543–556 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  179. Brockes, J.P., Kumar, A.: Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science. 310(5756), 1919–1923 (2005)

    Article  CAS  PubMed  Google Scholar 

  180. Simon, A., Tanaka, E.M.: Limb regeneration. Wiley Interdiscip Rev Dev Biol. 2(2), 291–300 (2013)

    Article  PubMed  Google Scholar 

  181. Villarreal-Ponce, A., Tiruneh, M.W., Lee, J., Guerrero-Juarez, C.F., Kuhn, J., David, J.A., Dammeyer, K., Mc Kell, R., Kwong, J., Rabbani, P.S., Nie, Q., Ceradini, D.J.: Keratinocyte-macrophage crosstalk by the Nrf2/Ccl2/EGF signaling Axis orchestrates tissue repair. Cell. Rep. 33(8), 108417 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Li, F., Huang, Q., Chen, J., Peng, Y., Roop, D.R., Bedford, J.S., Li, C.-Y.: Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci. Signal. 3(110), ra13 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  183. Tseng, A.-S., Adams, D.S., Qiu, D., Koustubhan, P., Levin, M.: Apoptosis is required during early stages of tail regeneration in Xenopus laevis. Dev. Biol. 301(1), 62–69 (2007)

    Article  CAS  PubMed  Google Scholar 

  184. Bergmann, A., Steller, H.: Apoptosis, stem cells, and tissue regeneration. Sci. Signal. 3(145), re8 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  185. Ryoo, H.D., Bergmann, A.: The role of apoptosis-induced proliferation for regeneration and cancer. Cold Spring Harb Perspect Biol. 4(8), a008797 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  186. Wang, Q., Liu, Y., Jin, B., Dong, Z., Chen, G., Liu, D.: Djmek is involved in planarian regeneration by regulation of cell proliferation and apoptosis. Biochem. Biophys. Res. Commun. 532(3), 355–361 (2020)

    Article  CAS  PubMed  Google Scholar 

  187. Jopling, C., Boue, S., Izpisua Belmonte, J.C.: Dedifferentiation, transdifferentiation and reprogramming: Three routes to regeneration. Nat. Rev. Mol. Cell. Biol. 12(2), 79–89 (2011)

    Article  CAS  PubMed  Google Scholar 

  188. Antos, C.L., Tanaka, E.M.: Vertebrates that regenerate as models for guiding stem cels. Adv. Exp. Med. Biol. 695, 184–214 (2010)

    Article  CAS  PubMed  Google Scholar 

  189. Odelberg, S.J.: Cellular plasticity in vertebrate regeneration. Anat. Rec B New. Anat. 287(1), 25–35 (2005)

    Article  PubMed  Google Scholar 

  190. Stoick-Cooper, C.L., Moon, R.T., Weidinger, G.: Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine. Genes Dev. 21(11), 1292–1315 (2007)

    Article  CAS  PubMed  Google Scholar 

  191. Barker, T.H.: The role of ECM proteins and protein fragments in guiding cell behavior in regenerative medicine. Biomaterials. 32(18), 4211–4214 (2011)

    Article  CAS  PubMed  Google Scholar 

  192. Brockes, J.P., Gates, P.B.: Mechanisms underlying vertebrate limb regeneration: Lessons from the salamander. Biochem. Soc. Trans. 42(3), 625–630 (2014)

    Article  CAS  PubMed  Google Scholar 

  193. Zhang, K., Wang, H.: [Role of Fucosylation in Cancer]. Zhongguo Fei Ai Za Zhi. 19(11), 760–765 (2016)

    PubMed  Google Scholar 

  194. Shan, M., Yang, D., Dou, H., Zhang, L.: Fucosylation in cancer biology and its clinical applications.Prog Mol Biol Transl Sci162. (2019)

  195. Zhang, K., Wang, H.: [Role of Fucosylation in Cancer]. Zhongguo Fei Ai Za Zhi. 19(11), 760–765 (2016)

    PubMed  Google Scholar 

  196. Bastian, K., Scott, E., Elliott, D.J., Munkley, J.: FUT8 Alpha-(1,6)-Fucosyltransferase in Cancer.Int J Mol Sci22 (1). (2021)

  197. Wang, X., Gu, J., Miyoshi, E., Honke, K., Taniguchi, N.: Phenotype changes of Fut8 knockout mouse: Core fucosylation is crucial for the function of growth factor receptor(s). Methods Enzymol. 417, 11–22 (2006)

    Article  CAS  PubMed  Google Scholar 

  198. Wang, Y., Fukuda, T., Isaji, T., Lu, J., Gu, W., Lee, H.-H., Ohkubo, Y., Kamada, Y., Taniguchi, N., Miyoshi, E., Gu, J.: Loss of α1,6-fucosyltransferase suppressed liver regeneration: Implication of core fucose in the regulation of growth factor receptor-mediated cellular signaling. Sci. Rep. 5, 8264 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Hart, G.W., Slawson, C., Ramirez-Correa, G., Lagerlof, O.: Cross talk between O-GlcNAcylation and phosphorylation: Roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 80, 825–858 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Butkinaree, C., Park, K., Hart, G.W.: O-linked beta-N-acetylglucosamine (O-GlcNAc): Extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress.Biochim Biophys Acta1800 (2). (2010)

  201. Zhu, W., Leber, B., Andrews, D.W.: Cytoplasmic O-glycosylation prevents cell surface transport of E-cadherin during apoptosis. EMBO J. 20(21), 5999–6007 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ha, J.R., Hao, L., Venkateswaran, G., Huang, Y.H., Garcia, E., Persad, S.: β-catenin is O-GlcNAc glycosylated at serine 23: Implications for β-catenin’s subcellular localization and transactivator function. Exp. Cell. Res. 321(2), 153–166 (2014)

    Article  CAS  PubMed  Google Scholar 

  203. Ozcan, S., Andrali, S.S., Cantrell, J.E.L.: Modulation of transcription factor function by O-GlcNAc modification. Biochim. Biophys. Acta. 1799(5–6), 353–364 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  204. Lagerlöf, O., Hart, G.W.: O-GlcNAcylation of neuronal proteins: Roles in neuronal functions and in Neurodegeneration. Adv. Neurobiol. 9, 343–366 (2014)

    Article  PubMed  Google Scholar 

  205. Ma, X., Li, H., He, Y., Hao, J.: The emerging link between O-GlcNAcylation and neurological disorders. Cell. Mol. Life Sci. 74(20), 3667–3686 (2017)

    Article  CAS  PubMed  Google Scholar 

  206. Rahman, M.M., Stuchlick, O., El-Karim, E.G., Stuart, R., Kipreos, E.T., Wells, L.: Intracellular protein glycosylation modulates insulin mediated lifespan in C.elegans. Aging (Albany NY). 2(10), 678–690 (2010)

    Article  CAS  PubMed  Google Scholar 

  207. Wheatley, E.G., Albarran, E., White, C.W., Bieri, G., Sanchez-Diaz, C., Pratt, K., Snethlage, C.E., Ding, J.B., Villeda, S.A.: Neuronal O-GlcNAcylation improves cognitive function in the aged mouse brain. Curr. Biol. 29, 20 (2019)

    Article  Google Scholar 

  208. Itano, N.: Simple primary structure, complex turnover regulation and multiple roles of hyaluronan. J. Biochem. 144(2), 131–137 (2008)

    Article  CAS  PubMed  Google Scholar 

  209. Litwiniuk, M., Krejner, A., Speyrer, M.S., Gauto, A.R., Grzela, T.: Hyaluronic acid in inflammation and tissue regeneration. Wounds. 28(3), 78–88 (2016)

    PubMed  Google Scholar 

  210. Bonafè, F., Govoni, M., Giordano, E., Caldarera, C.M., Guarnieri, C., Muscari, C.: Hyaluronan and cardiac regeneration. J. Biomed. Sci. 21, 100 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  211. Tammi, M., Seppälä, P.O., Lehtonen, A., Möttönen, M.: Connective tissue components in normal and atherosclerotic human coronary arteries. Atherosclerosis. 29(2), 191–194 (1978)

    Article  CAS  PubMed  Google Scholar 

  212. Waldenström, A., Martinussen, H.J., Gerdin, B., Hällgren, R.: Accumulation of hyaluronan and tissue edema in experimental myocardial infarction. J. Clin. Invest. 88(5), 1622–1628 (1991)

    Article  PubMed  PubMed Central  Google Scholar 

  213. Jentsch, H., Pomowski, R., Kundt, G., Göcke, R.: Treatment of gingivitis with hyaluronan. J. Clin. Periodontol. 30(2), 159–164 (2003)

    Article  CAS  PubMed  Google Scholar 

  214. Shen, L.H., Li, Y., Gao, Q., Savant-Bhonsale, S., Chopp, M.: Down-regulation of neurocan expression in reactive astrocytes promotes axonal regeneration and facilitates the neurorestorative effects of bone marrow stromal cells in the ischemic rat brain. Glia. 56(16), 1747–1754 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  215. Wigén, J., Elowsson-Rendin, L., Karlsson, L., Tykesson, E., Westergren-Thorsson, G.: Glycosaminoglycans: A link between Development and Regeneration in the lung. Stem Cells Dev. 28(13), 823–832 (2019)

    Article  PubMed  Google Scholar 

  216. Esko, J.D., Selleck, S.B.: Order out of chaos: Assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471 (2002)

    Article  CAS  PubMed  Google Scholar 

  217. Smith, G.N., Toole, B.P., Gross, J.: Hyaluronidase activity and glycosaminoglycan synthesis in the amputated newt limb: Comparison of denervated, nonregenerating limbs with regenerates. Dev. Biol. 43(2), 221–232 (1975)

    Article  CAS  PubMed  Google Scholar 

  218. Zenjari, C., Boilly-Marer, Y., Desbiens, X., Oudghir, M., Hondermarck, H., Boilly, B.: Experimental evidence for FGF-1 control of blastema cell proliferation during limb regeneration of the amphibian Pleurodeles waltl. Int. J. Dev. Biol. 40(5), 965–971 (1996)

    CAS  PubMed  Google Scholar 

  219. Cui, J., Zheng, H., Zhang, J., Jia, L., Feng, Y., Wang, W., Li, H., Chen, F.: Profiling of glycan alterations in regrowing limb tissues of Cynops orientalis. Wound Repair. Regen. 25(5), 836–845 (2017)

    Article  PubMed  Google Scholar 

  220. Ronan, R., Kshirsagar, A., Rebelo, A.L., Sunny, A., Kilcoyne, M., Flaherty, R.O., Rudd, P.M., Schlosser, G., Saldova, R., Pandit, A., McMahon, S.S.: Distinct glycosylation responses to spinal cord Injury in Regenerative and Nonregenerative Models. J. Proteome Res. 21(6), 1449–1466 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Beck, C.W., Christen, B., Slack, J.M.W.: Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate. Dev. Cell. 5(3), 429–439 (2003)

    Article  CAS  PubMed  Google Scholar 

  222. Grotek, B., Wehner, D., Weidinger, G.: Notch signaling coordinates cellular proliferation with differentiation during zebrafish fin regeneration. Development. 140(7), 1412–1423 (2013)

    Article  CAS  PubMed  Google Scholar 

  223. Zhang, R., Han, P., Yang, H., Ouyang, K., Lee, D., Lin, Y.-F., Ocorr, K., Kang, G., Chen, J., Stainier, D.Y.R., Yelon, D., Chi, N.C.: In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature. 498(7455), 497–501 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Peal, D.S., Burns, C.G., Macrae, C.A., Milan, D.: Chondroitin sulfate expression is required for cardiac atrioventricular canal formation. Dev. Dyn. 238(12), 3103–3110 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Ouyang, X., Panetta, N.J., Talbott, M.D., Payumo, A.Y., Halluin, C., Longaker, M.T., Chen, J.K.: Hyaluronic acid synthesis is required for zebrafish tail fin regeneration.PloS one12 (2), e0171898. (2017)

  226. Machingo, Q.J., Fritz, A., Shur, B.D.: A beta1,4-galactosyltransferase is required for Bmp2-dependent patterning of the dorsoventral axis during zebrafish embryogenesis. Development. 133(11), 2233–2241 (2006)

    Article  CAS  PubMed  Google Scholar 

  227. Avsar-Ban, E., Ishikawa, H., Manya, H., Watanabe, M., Akiyama, S., Miyake, H., Endo, T., Tamaru, Y.: Protein O-mannosylation is necessary for normal embryonic development in zebrafish. Glycobiology. 20(9), 1089–1102 (2010)

    Article  CAS  PubMed  Google Scholar 

  228. Wang, W., Yu, Y., Liu, H., Zheng, H., Jia, L., Zhang, J., Wang, X., Yang, Y., Chen, F.: Protein core Fucosylation regulates Planarian Head Regeneration Neoblast Proliferation. Front. Cell. Dev. Biol. 9, 625823 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  229. Babu, P.: Glycans in regeneration.ACS Chem Biol9 (1). (2014)

Download references

Funding

This work was supported by the National Natural Science Foundation of P. R. China (No. 31670996).

Author information

Authors and Affiliations

Authors

Contributions

Concept and design: Zhongyu Yue, Yajie Yu, Boyuan Gao; data collection and analysis: Du Wang, Hongxiao Sun, Yue Feng, Zihan Ma; drafting of the article for important intellectual content: Zhongyu Yue, Yajie Yu, Boyuan Gao, study supervision: Xin Xie. All authors reviewed the manuscript.“

Corresponding author

Correspondence to Xin Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, Z., Yu, Y., Gao, B. et al. Advances in protein glycosylation and its role in tissue repair and regeneration. Glycoconj J 40, 355–373 (2023). https://doi.org/10.1007/s10719-023-10117-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-023-10117-8

Keywords

Navigation