Skip to main content
Log in

Coisotropic Hofer–Zehnder capacities of convex domains and related results

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

We prove representation formulas for the coisotropic Hofer–Zehnder capacities of bounded convex domains with special coisotropic submanifolds and the leaf relation (introduced by Lisi and Rieser recently), study their estimates and relations with the Hofer–Zehnder capacity, give some interesting corollaries, and also obtain corresponding versions of a Brunn-Minkowski type inequality by Artstein–Avidan and Ostrover and a theorem by Evgeni Neduv.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Arnold, V.I.: The first steps of symplectic topology. Russian Math. Surv. 41, 1–21 (1986)

    Article  MathSciNet  Google Scholar 

  2. Artstein-Avidan, S., Milman, V., Ostrover, Y.: The M-ellipsoid, symplectic capacities and volume. Comment. Math. Helv. 83, 359–369 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Artstein-Avidan, S., Ostrover, Y.: A Brunn–Minkowski inequality for symplectic capacities of convex domains. Int. Math. Res. Not. 13, rnn044, 31 (2008)

    MATH  Google Scholar 

  4. Artstein-Avidan, S., Ostrover, Y.: Bounds for Minkowski billiard trajectories in convex bodies. Int. Math. Res. Not. 2014(1), 165–193 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Artstein-Avidan, S., Karasev, R., Ostrover, Y.: From symplectic measurements to the Mahler conjecture. Duke Math. J. 163(11), 2003–2022 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balitskiy, A.: Equality cases in Viterbo’s conjecture and isoperimetric billiard inequalities. Int. Math. Res. Not. 2020(7), 1957–1978 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barraud, J.F., Cornea, O.: Lagrangian intersections and the Serre spectral sequence. Ann. Math. (2) 166(3), 657–722 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Biran, P., Cornea, O.: A Lagrangian quantum homology. In: New Perspectives and Challenges in Symplectic Field Theory, CRM Proc. Lecture Notes, 49, Amer. Math. Soc., Providence, RI, pp. 1-44 (2009). MR 2555932

  9. Blot, J.: On the almost everywhere continuity. ArXiv:1411.3582v1 [math.OC]

  10. Bourgain, J., Lindenstrauss, J., Milman, V.: Minkowski sums and symmetrizations. Geometric aspects of functional analysis (1986/87), 44–66, Lecture Notes in Math., 1317, Springer, Berlin, 1988

  11. Brezis, H.: Functional Analysis. Sobolev spaces and partial differential equations. Universitext. Springer, New York (2011)

    MATH  Google Scholar 

  12. Cappell, S.E., Lee, R., Miller, E.Y.: On the Maslov index. Comm. Pure Appl. Math. 47(2), 121–186 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Clarke, F.H.: Optimization and Nonsmooth Analysis. Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley & Sons Inc, New York (1983)

    Google Scholar 

  14. Croke, C.B., Weinstein, A.: Closed curves on convex hypersurfaces and periods of nonlinear oscillations. Invent. Math. 64(2), 199–202 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. de Gosson, M.: Symplectic geometry and quantum mechanics. Operator Theory: Advances and Applications, 166. Advances in Partial Differential Equations (Basel). Birkh?user Verlag, Basel (2006)

  16. Ekeland, I: Convexity methods in Hamiltonian mechanics. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 19. Springer-Verlag, Berlin (1990)

  17. Ekeland, I., Hofer, H.: Symplectic topology and Hamiltonian dynamics. Math. Z. 200, 355–378 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ekeland, I., Hofer, H.: Symplectic topology and Hamiltonian dynamics II. Math. Z. 203, 553–567 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Geiges, H.: An Introduction to Contact Topology. Cambridge Studies in Advanced Mathematics, vol. 109. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  20. Gluskin, E.D., Ostrover, Y.: Asymptotic equivalence of symplectic capacities. Comment. Math. Helv. 91, 131–144 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ginzburg, V.L., Gürel, B.Z.: Relative Hofer-Zehnder capacity and periodic orbits in twisted cotangent bundles. Duke Math. J. 123(1), 1–47 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gutt, J., Ramos, V.G.B.: Towards the strong Viterbo conjecture. ArXiv:2003.10854 [math.SG]

  23. Haim-Kislev, P.: On the symplectic size of convex polytopes. Geom. Funct. Anal. 29, 440–463 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hermann, D.: Non-equivalence of symplectic capacities for open sets with restricted contact type boundary. Preprint (1998)

  25. Hofer, H., Zehnder, E.: A New Capacity for Symplectic Manifolds. Analysis, et Cetera, pp. 405–427. Academic Press, Boston, MA (1990)

    Google Scholar 

  26. Hofer, H., Zehnder, E.: Symplectic Invariants and Hamiltonian Dynamics. Basler Lehrbücher, Birkhäuser Verlag, Basel, Birkhäuser Advanced Texts (1994)

    Book  MATH  Google Scholar 

  27. Humiliére, V., Leclercq, R., Seyfaddini, S.: Coisotropic rigidity and \(C^0\)-symplectic geometry. Duke Math. J. 164(4), 767–799 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Iriyeh, H., Shibata, M.: Symmetric Mahler’s conjecture for the volume product in the \(3\)-dimensional case. Duke Math. J. 169(6), 1077–1134 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jin, R., Lu, G.: Representation formula for symmetric symplectic capacity and applications. Discrete & Cont. Dyn. Sys. -A 40(8), 4705–4765 (2020)

    Article  MATH  Google Scholar 

  30. Jin, R., Lu, G.: Generalizations of Ekeland-Hofer and Hofer-Zehnder symplectic capacities and applications. ArXiv:1903.01116v2 [math.SG] 16 May 2019

  31. Jin, R., Lu, G.: Coisotropic Ekeland-Hofer symplectic capacities. Proc. Roy. Soc. Edinb. A. https://doi.org/10.1017/prm.2022.59, published online, 2022, arXiv:1910.14474v2 [math.SG]

  32. Karasev, R., Sharipova, A.: Viterbo’s conjecture for certain Hamiltonians in classical mechanics. Arnold Math. J. 5(4), 483–500 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kim, J., Kim, S., Kwon, M.: Remarks on the systoles of symmetric convex hypersurfaces and symplectic capacities. J. Fixed Point Theory Appl. 24(2), 28, 26 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  34. Künzle, A. F.: Singular Hamiltonian Systems and Symplectic Capacities. Singularities and Differential Equations (Warsaw, 1993), 171–187. Banach Center Publications 33. Warsaw: Polish Academy of Sciences (1996)

  35. Lisi, S., Rieser, A.: Coisotropic Hofer-Zehnder capacities and non-squeezing for relative embeddings. J. Symplectic Geometry 18(3), 819–865 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu, C., Wang, Q.: Symmetrical symplectic capacity with applications. Discrete & Cont. Dyn. Sys. -A 32(6), 2253–2270 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lu, G.: Gromov-Witten invariants and pseudo symplectic capacities. Israel J. Math. 156, 1–63 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mahler, K.: Ein Übertragungsprinzip für konvexe Korper. Casopis Pyest. Mat. Fys. 68, 93–102 (1939)

    Article  MATH  Google Scholar 

  39. McDuff, D., Salamon, D.: Introduction to Symplectic Topolgy. Clarendon Press, UK (1998)

    MATH  Google Scholar 

  40. Mohnke, K.: Holomorphic disks and the chord conjecture. Ann. Math. (2) 154(1), 219–222 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Moser, J., Zehnder, E.: Notes on Dynamical Systems. Courant Lecture Notes in Mathematics, vol. 12. New York University, New York (2005)

    MATH  Google Scholar 

  42. Neduv, E.: Prescribed minimal period problems for convex Hamiltonian systems via Hofer–Zehnder symplectic capacity. Math. Z. 236(1), 99–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rieser, A.: Lagrangian blow-ups, blow-downs, and applications to real packing. J. Symplectic Geometry 12, 725–789 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Schneider, R.: Convex bodies: The Brunn–Minkowski Theory. Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  45. Shi, K., Lu, G.: Combinatorial formulas for some generalized Ekeland–Hofer–Zehnder capacities of convex polytopes. J. Fixed Point Theory Appl. 23(4), 67, 21 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  46. Shi, K., Lu, G.: Some cases of the Viterbo conjecture and the Mahler one. ArXiv:2008.04000 [math.SG]

  47. Sikorav, J.-C.: Systèmes Hamiltoniens et topologie symplectique. Dipartimento di Matematica dell’Universitá di Pisa, (1990). ETS, EDITRICE PISA

  48. Viterbo, C.: Metric and isoperimetric problems in symplectic geometry. J. Am. Math. Soc. 13, 411–431 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yang, F., Wei, Z.: Generalized Euler identity for subdifferentials of homogeneous functions and applications. J. Math. Anal. Appl. 337(1), 516–523 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are also deeply grateful to the anonymous referees for giving very helpful comments and suggestions to improve the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangcun Lu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Consent for publication

Not applicable.

Human and animal ethics

Not applicable.

Consent to participate

Not applicable.

Additional information

Dedicated to Professor Leonid Polterovich on the occasion of his sixtieth birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rongrong Jin was partially supported by Scientific Research Foundation of CAUC (No: 2020KYQD107).

Partially supported by the NNSF 11271044 of China.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, R., Lu, G. Coisotropic Hofer–Zehnder capacities of convex domains and related results. J. Fixed Point Theory Appl. 25, 54 (2023). https://doi.org/10.1007/s11784-023-01056-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11784-023-01056-w

Keywords

Mathematics Subject Classification

Navigation