Skip to main content
Log in

RNA Folding Based on 5 Beads Model and Multiscale Simulation

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

RNA folding prediction is very meaningful and challenging. The molecular dynamics simulation (MDS) of all atoms (AA) is limited to the folding of small RNA molecules. At present, most of the practical models are coarse grained (CG) model, and the coarse-grained force field (CGFF) parameters usually depend on known RNA structures. However, the limitation of the CGFF is obvious that it is difficult to study the modified RNA. Based on the 3 beads model (AIMS_RNA_B3), we proposed the AIMS_RNA_B5 model with three beads representing a base and two beads representing the main chain (sugar group and phosphate group). We first run the all atom molecular dynamic simulation (AAMDS), and fit the CGFF parameter with the AA trajectory. Then perform the coarse-grained molecular dynamic simulation (CGMDS). AAMDS is the foundation of CGMDS. CGMDS is mainly to carry out the conformation sampling based on the current AAMDS state and improve the folding speed. We simulated the folding of three RNAs, which belong to hairpin, pseudoknot and tRNA respectively. Compared to the AIMS_RNA_B3 model, the AIMS_RNA_B5 model is more reasonable and performs better.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Murray LJW, Arendall WB, Richardson DC, Richardson JS (2003) RNA backbone is rotameric. P Natl Acad Sci USA 100:13904–13909. https://doi.org/10.1073/pnas.1835769100

    Article  CAS  Google Scholar 

  2. Hershkovitz E, Sapiro G, Tannenbaum A, Williams LD (2006) Statistical analysis of RNA backbone. Ieee Acm T Comput Bi 3:33–46. https://doi.org/10.1109/TCBB.2006.13

  3. Tinoco I, Bustamante C (1999) How RNA folds. J Mol Biol 293:271–281. https://doi.org/10.1006/jmbi.1999.3001

  4. Kuhrova P, Best RB, Bottaro S, Bussi G, Sponer J, Otyepka M et al (2016) Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies. J Chem Theory Comput 12:4534–4548. https://doi.org/10.1021/acs.jctc.6b00300

  5. Duan Q, Tao P, Wang J, Xiao Y (2020) Molecular dynamics study of ways of RNA base-pair formation. Phys Rev 102:032403. https://doi.org/10.1103/PhysRevE.102.032403

    CAS  Google Scholar 

  6. Bowman GR, Huang XH, Yao Y, Sun J, Carlsson G, Guibas LJ et al (2008) Structural insight into RNA hairpin folding intermediates. J Am Chem Soc 130:9676–9678. https://doi.org/10.1021/ja8032857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Popenda M, Szachniuk M, Antczak M, Purzycka KJ, Lukasiak P, Bartol N et al (2012) Automated 3D structure composition for large RNAs. Nucleic Acids Res 40:112. https://doi.org/10.1093/nar/gks339

    Article  Google Scholar 

  8. Zhao YJ, Huang YY, Gong Z, Wang YJ, Man JF, Xiao Y (2012) Automated and fast building of three-dimensional RNA structures. Sci Rep 2:734. https://doi.org/10.1038/srep00734

  9. Cao S, Chen SJ (2011) Physics-based de novo prediction of RNA 3D structures. J Phys Chem B 115:4216–4226. https://doi.org/10.1021/jp112059y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu XJ, Chen SJ (2020) Topological constraints of RNA pseudoknotted and loop-kissing motifs: applications to three-dimensional structure prediction. Nucleic Acids Res 48:6503–6512. https://doi.org/10.1093/nar/gkaa463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Das R, Baker D (2007) Automated de novo prediction of native-like RNA tertiary structures. P Natl Acad Sci USA 104:14664–14669. https://doi.org/10.1073/pnas.0703836104

    Article  CAS  Google Scholar 

  12. Xu XJ, Chen SJ (2018) Hierarchical assembly of RNA three-dimensional structures based on loop templates. J Phys Chem B 122:5327–5335. https://doi.org/10.1021/acs.jpcb.7b10102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Parisien M, Major F (2008) The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452:51–55. https://doi.org/10.1038/nature06684

    Article  CAS  PubMed  Google Scholar 

  14. Cragnolini T, Laurin Y, Derreumaux P, Pasquali S (2015) Coarse-grained HiRE-RNA model for ab initio RNA folding beyond simple molecules, including noncanonical and multiple base pairings. J Chem Theory Comput 11:3510–3522. https://doi.org/10.1021/acs.jctc.5b00200

    Article  CAS  PubMed  Google Scholar 

  15. Xia Z, Gardner DP, Gutell RR, Ren PY (2010) Coarse-grained model for simulation of RNA three-dimensional structures. J Phys Chem B 114:13497–13506. https://doi.org/10.1021/jp104926t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dawson WK, Maciejczyk M, Jankowska EJ, Bujnicki JM (2016) Coarse-grained modeling of RNA 3D structure. Methods 103:138–156. https://doi.org/10.1016/j.ymeth.2016.04.026

    Article  CAS  PubMed  Google Scholar 

  17. Boniecki MJ, Lach G, Dawson WK, Tomala K, Lukasz P, Soltysinski T et al (2016) SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction. Nucleic Acids Res 44:63. https://doi.org/10.1093/nar/gkv1479

  18. Tan RKZ, Petrov AS, Harvey SC (2006) YUP: a molecular simulation program for coarse-grained and multiscaled models. J Chem Theory Comput 2:529–540. https://doi.org/10.1021/ct050323r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Malhotra A, Tan RKZ, Harvey SC (1994) Modeling large rnas and ribonucleoprotein-particles using molecular mechanics techniques. Biophys J 66:1777–1795. https://doi.org/10.1016/S0006-3495(94)80972-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jonikas MA, Radmer RJ, Laederach A, Das R, Pearlman S, Herschlag D et al (2009) Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters. RNA 15:189–199. https://doi.org/10.1261/rna.1270809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cao S, Chen SJ (2005) Predicting RNA folding thermodynamics with a reduced chain representation model. RNA 11:1884–1897. https://doi.org/10.1261/rna.2109105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cao S, Chen SJ (2006) Predicting RNA pseudoknot folding thermodynamics. Nucleic Acids Res 34:2634–2652. https://doi.org/10.1093/nar/gkl346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cao S, Chen SJ (2009) Predicting structures and stabilities for H-type pseudoknots with interhelix loops. RNA 15:696–706. https://doi.org/10.1261/rna.1429009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cao S, Chen SJ (2011) Structure and stability of RNA/RNA kissing complex: with application to HIV dimerization initiation signal. RNA 17:2130–2143. https://doi.org/10.1261/rna.026658.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang D, Chen SJ (2018) IsRNA: an iterative simulated reference state approach to modeling correlated interactions in RNA folding. J Chem Theory Comput 14:2230–2239. https://doi.org/10.1021/acs.jctc.7b01228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang D, Li J, Chen SJ (2021) IsRNA1: de novo prediction and blind screening of RNA 3D structures. J Chem Theory Comput 17:1842–1857. https://doi.org/10.1021/acs.jctc.0c01148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang D, Chen SJ, Zhou R (2021) Modeling noncanonical RNA base pairs by a coarse-grained IsRNA2 model. J Phys Chem B 125:11907–11915. https://doi.org/10.1021/acs.jpcb.1c07288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang DL, Li Y, Zhong QL, Wang AH, Weng JB, Gong LD et al (2022) Ribonucleic acid folding prediction based on iterative multiscale simulation. J Phys Chem Lett 13:9957–9966. https://doi.org/10.1021/acs.jpclett.2c01342

    Article  CAS  PubMed  Google Scholar 

  29. Kerpedjiev P, Siederdissen CHZ, Hofacker IL (2015) Predicting RNA 3D structure using a coarse-grain helix-centered model. RNA 21:1110–1121. https://doi.org/10.1261/rna.047522.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim N, Zahran M, Schlick T (2015) Computational prediction of riboswitch tertiary structures including pseudoknots by RAGTOP: a hierarchical graph sampling approach. Method Enzymol 553:115–135. https://doi.org/10.1016/bs.mie.2014.10.054

    Article  CAS  Google Scholar 

  31. Xiong P, Wu RB, Zhan J, Zhou YQ (2021) Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement. Nat Commun 12:2777. https://doi.org/10.1038/s41467-021-23100-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shelton SB, Reinsborough C, Xhemalce B (2016) Who Watches the Watchmen: Roles of RNA Modifications in the RNA Interference Pathway. Plos Genet 12:e1006139. https://doi.org/10.1371/journal.pgen.1006139

    Article  PubMed  PubMed Central  Google Scholar 

  33. de Crecy-Lagard V, Boccaletto P, Mangleburg CG, Sharma P, Lowe TM, Leidel SA et al (2019) Matching tRNA modifications in humans to their known and predicted enzymes. Nucleic Acids Res 47:2143–2159. https://doi.org/10.1093/nar/gkz011

  34. Boo SH, Kim YK (2020) The emerging role of RNA modifications in the regulation of mRNA stability. Exp Mol Med 52:400–408. https://doi.org/10.1038/s12276-020-0407-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Roundtree IA, Evans ME, Pan T, He C (2017) Dynamic RNA modifications in gene expression regulation. Cell 169:1187–1200. https://doi.org/10.1016/j.cell.2017.05.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Krienke C, Kolb L, Diken E, Streuber M, Kirchhoff S, Bukur T et al (2021) A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science 371:145–153. https://doi.org/10.1126/science.aay3638

  37. Boriack-Sjodin PA, Ribich S, Copeland RA (2018) RNA-modifying proteins as anticancer drug targets. Nat Rev Drug Discov 17:435–453. https://doi.org/10.1038/nrd.2018.71

    Article  CAS  PubMed  Google Scholar 

  38. Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga G et al (2021) Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 593:597–601. https://doi.org/10.1038/s41586-021-03536-w

  39. Singh J, Hanson J, Paliwal K, Zhou YQ (2019) RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nat Commun 10:5407. https://doi.org/10.1038/s41467-019-13395-9

    Article  PubMed  PubMed Central  Google Scholar 

  40. Singh J, Paliwal K, Zhang TC, Singh J, Litfin T, Zhou YQ (2021) Improved RNA secondary structure and tertiary base-pairing prediction using evolutionary profile, mutational coupling and two-dimensional transfer learning. Bioinformatics 37:2589–2600. https://doi.org/10.1093/bioinformatics/btab165

  41. Sloma MF, Mathews DH (2017) Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs. Plos Comput Biol 13:e1005827. https://doi.org/10.1371/journal.pcbi.1005827

  42. Zhong Q, Li G (2021) Adaptively iterative multiscale switching simulation strategy and applications to protein folding and structure prediction. J Phys Chem Lett 12:3151–3162. https://doi.org/10.1021/acs.jpclett.1c00618

  43. Li SX, Olson WK, Lu XJ (2019) Web 3DNA 2.0 for the analysis, visualization, and modeling of 3D nucleic acid structures. Nucleic Acids Res 47:W26–W34. https://doi.org/10.1093/nar/gkz394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhong QL, Li GH (2020) Arbitrary resolution with two bead types coarse-grained strategy and applications to protein recognition. J Phys Chem Lett 11:3263–3270. https://doi.org/10.1021/acs.jpclett.0c00750

    Article  CAS  PubMed  Google Scholar 

  45. Ruhle V, Junghans C, Lukyanov A, Kremer K, Andrienko D (2009) Versatile object-oriented toolkit for coarse-graining applications. J Chem Theory Comput 5:3211–3223. https://doi.org/10.1021/ct900369w

    Article  CAS  PubMed  Google Scholar 

  46. Zok T, Antczak M, Zurkowski M, Popenda M, Blazewicz J, Adamiak RW et al (2018) RNApdbee 2.0: multifunctional tool for RNA structure annotation. Nucleic Acids Research 46:W30–W35. https://doi.org/10.1093/nar/gky314

  47. Shi YZ, Wang FH, Wu YY, Tan ZJ (2014) A coarse-grained model with implicit salt for RNAs: predicting 3D structure, stability and salt effect. J Chem Phys 141:105102. https://doi.org/10.1063/1.4894752

  48. Bottaro S, Banas P, Sponer J, Bussi G (2016) Free energy landscape of GAGA and UUCG RNA tetraloops. J Phys Chem Lett 7:4032–4038. https://doi.org/10.1021/acs.jpclett.6b01905

    Article  CAS  PubMed  Google Scholar 

  49. Bergonzo C, Henriksen NM, Roe DR, Cheatham TE (2015) Highly sampled tetranucleotide and tetraloop motifs enable evaluation of common RNA force fields. RNA 21:1578–1590. https://doi.org/10.1261/rna.051102.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bergonzo C, Cheatham TE (2015) Improved force field parameters lead to a better description of RNA structure. J Chem Theory Comput 11:3969–3972. https://doi.org/10.1021/acs.jctc.5b00444

    Article  CAS  PubMed  Google Scholar 

  51. Yoo J, Aksimentiev A (2016) Improved parameterization of amine-carboxylate and amine-phosphate interactions for molecular dynamics simulations using the CHARMM and AMBER force fields. J Chem Theory Comput 12:430–443. https://doi.org/10.1021/acs.jctc.5b00967

    Article  CAS  PubMed  Google Scholar 

  52. Yang C, Lim M, Kim E, Pak Y (2017) Predicting RNA structures via a simple van der waals correction to an all-atom force field. J Chem Theory Comput 13:395–399. https://doi.org/10.1021/acs.jctc.6b00808

    Article  CAS  PubMed  Google Scholar 

  53. Aytenfisu AH, Spasic A, Grossfield A, Stern HA, Mathews DH (2017) Revised RNA dihedral parameters for the amber force field improve RNA molecular dynamics. J Chem Theory Comput 13:900–915. https://doi.org/10.1021/acs.jctc.6b00870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tan D, Piana S, Dirks RM, Shaw DE (2018) RNA force field with accuracy comparable to state-of-the-art protein force fields. Proc Natl Acad Sci USA 115:E1346–E1355. https://doi.org/10.1073/pnas.1713027115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from the National Key R&D Program of China (2019YFA0709400), the National Natural Science Foundation of China (21933010), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB 37000000), China Postdoctoral Science Foundation (No. 2021M703153) and the Foundation of Liaoning Province Education Administration (LJKZ0983).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohui Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

12539_2023_561_MOESM1_ESM.docx

Supplementary file1 (DOCX 1698 KB)—Fig.S1 Targeted MDS folding process of the three RNA. Fig.S2 Multiscale MDS of the folding process of 2a43. Fig.S3 Multiscale MDS of the folding process of 2zm5. Fig.S4 Multiscale MDS of the folding process of 2l2j.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Gong, L., Weng, J. et al. RNA Folding Based on 5 Beads Model and Multiscale Simulation. Interdiscip Sci Comput Life Sci 15, 393–404 (2023). https://doi.org/10.1007/s12539-023-00561-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-023-00561-3

Keywords

Navigation