Skip to main content

Advertisement

Log in

Power of NGS-based tests in HSP diagnosis: analysis of massively parallel sequencing in clinical practice

  • Review
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Hereditary spastic paraplegia (HSP) refers to a group of heterogeneous neurological disorders mainly characterized by corticospinal degeneration (pure forms), but sometimes associated with additional neurological and extrapyramidal features (complex HSP). The advent of next-generation sequencing (NGS) has led to huge improvements in knowledge of HSP genetics and made it possible to clarify the genetic etiology of hundreds of “cold cases,” accelerating the process of reaching a molecular diagnosis. The different NGS-based strategies currently employed as first-tier approaches most commonly involve the use of targeted resequencing panels and exome sequencing, whereas genome sequencing remains a second-tier approach because of its high costs. The question of which approach is the best is still widely debated, and many factors affect the choice. Here, we aim to analyze the diagnostic power of different NGS techniques applied in HSP, by reviewing 38 selected studies in which different strategies were applied in different-sized cohorts of patients with genetically uncharacterized HSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Harding A (1993) Hereditary spastic paraplegia. Semin Neurol 13:333–336. https://doi.org/10.1055/s-2008-1041143

    Article  CAS  PubMed  Google Scholar 

  2. Fink JK (2013) Hereditary spastic paraplegia: Clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol 126:307–328. https://doi.org/10.1007/s00401-013-1115-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ruano L, Melo C, Silva MC, Coutinho P (2014) The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 42:174–183. https://doi.org/10.1159/000358801

    Article  PubMed  Google Scholar 

  4. Vander Stichele G, Durr A, Yoon G et al (2022) An integrated modelling methodology for estimating global incidence and prevalence of hereditary spastic paraplegia subtypes SPG4, SPG7, SPG11, and SPG15. BMC Neurol 22:115. https://doi.org/10.1186/s12883-022-02595-4

    Article  PubMed  PubMed Central  Google Scholar 

  5. Parodi L, Fenu S, Stevanin G, Durr A (2017) Hereditary spastic paraplegia: more than an upper motor neuron disease. Rev Neurol (Paris) 173:352–360. https://doi.org/10.1016/j.neurol.2017.03.034

    Article  CAS  PubMed  Google Scholar 

  6. Murala S, Nagarajan E, Bollu PC (2021) Hereditary spastic paraplegia. Neurol Sci 42:883–894. https://doi.org/10.1007/s10072-020-04981-7

    Article  PubMed  Google Scholar 

  7. Elsayed LE, Eltazi IZ, Ahmed AE, Stevanin G (2021) Insights into clinical, genetic, and pathological aspects of hereditary spastic paraplegias: a comprehensive overview. Front Mol Biosci 8:690899. https://doi.org/10.3389/fmolb.2021.690899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marques Matos C, Alonso I, Leão M (2019) Diagnostic yield of next-generation sequencing applied to neurological disorders. J Clin Neurosci 67:14–18. https://doi.org/10.1016/j.jocn.2019.06.041

    Article  PubMed  Google Scholar 

  9. Morganti S, Tarantino P, Ferraro E et al (2019) Complexity of genome sequencing and reporting: Next generation sequencing (NGS) technologies and implementation of precision medicine in real life. Crit Rev Oncol Hematol 133:171–182. https://doi.org/10.1016/j.critrevonc.2018.11.008

    Article  PubMed  Google Scholar 

  10. Jouet M, Rosenthal A, Armstrong G et al (1994) X-linked spastic paraplegia (SPG1), MASA syndrome and X-linked hydrocephalus result from mutations in the L1 gene. Nat Genet 7:402–407. https://doi.org/10.1038/ng0794-402

    Article  CAS  PubMed  Google Scholar 

  11. Klebe S, Stevanin G, Depienne C (2015) Clinical and genetic heterogeneity in hereditary spastic paraplegias: from SPG1 to SPG72 and still counting. Rev Neurol (Paris) 171:505–530. https://doi.org/10.1016/j.neurol.2015.02.017

    Article  CAS  PubMed  Google Scholar 

  12. Saputra L, Kumar KR (2021) Challenges and controversies in the genetic diagnosis of hereditary spastic paraplegia. Curr Neurol Neurosci Rep 21:15. https://doi.org/10.1007/s11910-021-01099-x

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhao L, Liu H, Yuan X et al (2020) Comparative study of whole exome sequencing-based copy number variation detection tools. BMC Bioinforma 21:97. https://doi.org/10.1186/s12859-020-3421-1

    Article  Google Scholar 

  14. Gordeeva V, Sharova E, Babalyan K et al (2021) Benchmarking germline CNV calling tools from exome sequencing data. Sci Rep 11:14416. https://doi.org/10.1038/s41598-021-93878-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kumar KR, Blair NF, Vandebona H et al (2013) Targeted next generation sequencing in SPAST-negative hereditary spastic paraplegia. J Neurol 260:2516–2522. https://doi.org/10.1007/s00415-013-7008-x

    Article  PubMed  Google Scholar 

  16. Elsayed LE, Mohammed IN, Hamed AA et al (2016) Hereditary spastic paraplegias: Identification of a novel SPG57 variant affecting TFG oligomerization and description of HSP subtypes in Sudan. Eur J Hum Genet 25:100–110. https://doi.org/10.1038/ejhg.2016.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Burguez D, Polese-Bonatto M, Scudeiro LAJ et al (2017) Clinical and molecular characterization of hereditary spastic paraplegias: a next-generation sequencing panel approach. J Neurol Sci 383:18–25. https://doi.org/10.1016/j.jns.2017.10.010

    Article  CAS  PubMed  Google Scholar 

  18. Iqbal Z, Rydning SL, Wedding IM et al (2017) Targeted high throughput sequencing in hereditary ataxia and spastic paraplegia. PLoS One 12:e0174667. https://doi.org/10.1371/journal.pone.0174667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morais S, Raymond L, Mairey M et al (2017) Massive sequencing of 70 genes reveals a myriad of missing genes or mechanisms to be uncovered in hereditary spastic paraplegias. Eur J Hum Genet 25:1217–1228. https://doi.org/10.1038/ejhg.2017.124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. D’Amore A, Tessa A, Casali C et al (2018) Next generation molecular diagnosis of hereditary spastic paraplegias: an Italian cross-sectional study patients and study design. Front Neurol 9:981. https://doi.org/10.3389/fneur.2018.00981

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dong EL, Wang C, Wu S et al (2018) Clinical spectrum and genetic landscape for hereditary spastic paraplegias in China. Mol Neurodegener 13:36. https://doi.org/10.1186/s13024-018-0269-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu C, Li L-X, Dong H-L et al (2018) Targeted next-generation sequencing improves diagnosis of hereditary spastic paraplegia in Chinese patients. J Mol Med 96:701–712. https://doi.org/10.1007/s00109-018-1655-4

    Article  CAS  PubMed  Google Scholar 

  23. Travaglini L, Aiello C, Stregapede F et al (2018) The impact of next-generation sequencing on the diagnosis of pediatric-onset hereditary spastic paraplegias: new genotype-phenotype correlations for rare HSP-related genes. Neurogenetics 19:111–121. https://doi.org/10.1007/s10048-018-0545-9

    Article  CAS  PubMed  Google Scholar 

  24. Almomen M, Martens K, Quadir A et al (2019) High diagnostic yield and novel variants in very late-onset spasticity. J Neurogenet 33:27–32. https://doi.org/10.1080/01677063.2019.1566326

    Article  CAS  PubMed  Google Scholar 

  25. Wei Q, Dong HL, Pan L-Y et al (2019) Clinical features and genetic spectrum in Chinese patients with recessive hereditary spastic paraplegia. Transl Neurodegener 8:19. https://doi.org/10.1186/s40035-019-0157-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cui F, Sun L, Qiao J et al (2020) Genetic mutation analysis of hereditary spastic paraplegia: a retrospective study. Medicine (Baltimore) 99:e20193. https://doi.org/10.1097/MD.0000000000020193

    Article  PubMed  Google Scholar 

  27. Jiao B, Zhou Z, Hu Z et al (2020) Homozygosity mapping and next generation sequencing for the genetic diagnosis of hereditary ataxia and spastic paraplegia in consanguineous families. Parkinsonism Relat Disord 80:65–72. https://doi.org/10.1016/j.parkreldis.2020.09.013

    Article  PubMed  Google Scholar 

  28. Winder TL, Tan CA, Klemm S et al (2020) Clinical utility of multigene analysis in over 25,000 patients with neuromuscular disorders. Neurol Genet 6:e412. https://doi.org/10.1212/NXG.0000000000000412

    Article  PubMed  PubMed Central  Google Scholar 

  29. Haj Salem I, Beaudin M, Stumpf M et al (2021) Genetic and epidemiological study of adult ataxia and spastic paraplegia in Eastern Quebec. Can J Neurol Sci 48:655–665. https://doi.org/10.1017/cjn.2020.277

    Article  PubMed  Google Scholar 

  30. Perić S, Marković V, Candayan A et al (2022) Phenotypic and genetic heterogeneity of adult patients with hereditary spastic paraplegia from Serbia. Cells 11:2804. https://doi.org/10.3390/cells11182804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xing F, Du J (2022) Expansion of the mutation and phenotypic spectrum of hereditary spastic paraplegia. Neurol Sci 43:4989–4996. https://doi.org/10.1007/s10072-022-05921-3

    Article  PubMed  Google Scholar 

  32. Novarino G, Fenstermaker AG, Zaki MS et al (2014) Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science 343:506–511. https://doi.org/10.1126/science.1247363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kara E, Tucci A, Manzoni C et al (2016) Genetic and phenotypic characterization of complex hereditary spastic paraplegia. Brain 139:1904–1918. https://doi.org/10.1093/brain/aww111

    Article  PubMed  PubMed Central  Google Scholar 

  34. van de Warrenburg BP, Schouten MI, de Bot ST et al (2016) Clinical exome sequencing for cerebellar ataxia and spastic paraplegia uncovers novel gene–disease associations and unanticipated rare disorders. Eur J Hum Genet 24:1460–1466. https://doi.org/10.1038/ejhg.2016.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Souza PVS, Bortholin T, Dias RB et al (2017) New genetic causes for complex hereditary spastic paraplegia. J Neurol Sci 379:283–292. https://doi.org/10.1016/j.jns.2017.06.019

    Article  CAS  PubMed  Google Scholar 

  36. Elert-Dobkowska E, Stepniak I, Krysa W et al (2019) Next-generation sequencing study reveals the broader variant spectrum of hereditary spastic paraplegia and related phenotypes. Neurogenetics 20:27–38. https://doi.org/10.1007/s10048-019-00565-6

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhao M, Chen Y-J, Wang M-W et al (2019) Genetic and clinical profile of chinese patients with autosomal dominant spastic paraplegia. Mol Diagnosis Ther 23:781–789. https://doi.org/10.1007/s40291-019-00426-w

    Article  CAS  Google Scholar 

  38. Dong Y, Li X-Y, Wang X-L et al (2021) Genetic, clinical and neuroimaging profiles of sporadic and autosomal recessive hereditary spastic paraplegia cases in Chinese. Neurosci Lett 761:136108. https://doi.org/10.1016/j.neulet.2021.136108

    Article  CAS  PubMed  Google Scholar 

  39. Hashemi SS, Hajati R, Davarzani A et al (2022) Anticipation can be more common in hereditary spastic paraplegia with SPAST mutations than it appears. Can J Neurol Sci 49:651–661. https://doi.org/10.1017/cjn.2021.188

    Article  PubMed  Google Scholar 

  40. Sahin I, Saat H (2022) Hereditary spastic paraplegia: new insights into clinical variability and spasticity–ataxia phenotype, and novel mutations. Acta Neurol Belg 122:1529–1535. https://doi.org/10.1007/s13760-021-01779-y

    Article  PubMed  Google Scholar 

  41. Suchowersky O, Ashtiani S, Au PYB et al (2021) Hereditary spastic paraplegia initially diagnosed as cerebral palsy. Clin Park Relat Disord 5:100114. https://doi.org/10.1016/j.prdoa.2021.100114

    Article  PubMed  PubMed Central  Google Scholar 

  42. Carrasco Salas P, Martínez Fernández E, Méndez del Barrio C et al (2022) Clinical and molecular characterization of hereditary spastic paraplegia in a spanish Southern region. Int J Neurosci 132:767–777. https://doi.org/10.1080/00207454.2020.1838514

    Article  CAS  PubMed  Google Scholar 

  43. Diarra S, Coulibaly T, Dembélé K et al (2022) Hereditary spastic paraplegia in Mali: epidemiological and clinical features. Acta Neurol Belg. Online ahead of print. https://doi.org/10.1007/s13760-022-02113-w

  44. Lan MY, Lu CS, Wu SL et al (2022) Clinical and genetic characterization of a Taiwanese cohort with spastic paraparesis combined with cerebellar involvement. Front Neurol 13:1005670. https://doi.org/10.3389/fneur.2022.1005670

    Article  PubMed  PubMed Central  Google Scholar 

  45. Narendiran S, Debnath M, Shivaram S et al (2022) Novel insights into the genetic profile of hereditary spastic paraplegia in India. J Neurogenet 36:21–31. https://doi.org/10.1080/01677063.2022.2064463

    Article  CAS  PubMed  Google Scholar 

  46. Sager G, Turkyilmaz A, Ates EA, Kutlubay B (2022) HACE1, GLRX5, and ELP2 gene variant cause spastic paraplegies. Acta Neurol Belg 122:391–399. https://doi.org/10.1007/s13760-021-01649-7

    Article  PubMed  Google Scholar 

  47. Balicza P, Grosz Z, Gonzalez MA et al (2016) Genetic background of the hereditary spastic paraplegia phenotypes in Hungary - an analysis of 58 probands. J Neurol Sci 364:116–121. https://doi.org/10.1016/j.jns.2016.03.018

    Article  CAS  PubMed  Google Scholar 

  48. Lynch DS, Koutsis G, Tucci A et al (2016) Hereditary spastic paraplegia in Greece: characterisation of a previously unexplored population using next-generation sequencing. Eur J Hum Genet 24:857–863. https://doi.org/10.1038/ejhg.2015.200

    Article  PubMed  Google Scholar 

  49. Giordani GM, Diniz F, Fussiger H et al (2021) Clinical and molecular characterization of a large cohort of childhood onset hereditary spastic paraplegias. Sci Rep 11:22248. https://doi.org/10.1038/s41598-021-01635-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Méreaux JL, Banneau G, Papin M et al (2022) Clinical and genetic spectra of 1550 index patients with hereditary spastic paraplegia. Brain 145:1029–1037. https://doi.org/10.1093/brain/awab386

    Article  PubMed  Google Scholar 

  51. Kumar KR, Wali GM, Kamate M et al (2016) Defining the genetic basis of early onset hereditary spastic paraplegia using whole genome sequencing. Neurogenetics 17:265–270. https://doi.org/10.1007/s10048-016-0495-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim A, Kumar KR, Davis RL et al (2019) Increased diagnostic yield of spastic paraplegia with or without cerebellar ataxia through whole-genome sequencing. Cerebellum 18:781–790. https://doi.org/10.1007/s12311-019-01038-0

    Article  CAS  PubMed  Google Scholar 

  53. Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  54. Proukakis C, Moore D, Labrum R et al (2011) Detection of novel mutations and review of published data suggests that hereditary spastic paraplegia caused by spastin (SPAST) mutations is found more often in males. J Neurol Sci 306:62–65. https://doi.org/10.1016/j.jns.2011.03.043

    Article  CAS  PubMed  Google Scholar 

  55. Orlacchio A, Kawarai T, Gaudiello F et al (2005) Clinical and genetic study of a large SPG4 Italian family. Mov Disord 20:1055–1059. https://doi.org/10.1002/mds.20494

    Article  PubMed  Google Scholar 

  56. Hu R, Sun H, Zhang Q et al (2012) G-protein coupled estrogen receptor 1 mediated estrogenic neuroprotection against spinal cord injury. Crit Care Med 40:3230–3237. https://doi.org/10.1097/CCM.0b013e3182657560

    Article  CAS  PubMed  Google Scholar 

  57. ErfanianOmidvar M, Torkamandi S, Rezaei S et al (2021) Genotype–phenotype associations in hereditary spastic paraplegia: a systematic review and meta-analysis on 13,570 patients. J Neurol 268:2065–2082. https://doi.org/10.1007/s00415-019-09633-1

    Article  CAS  Google Scholar 

  58. Logsdon GA, Vollger MR, Eichler EE (2020) Long-read human genome sequencing and its applications. Nat Rev Genet 21:597–614. https://doi.org/10.1038/s41576-020-0236-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Galatolo D, De Michele G, Silvestri G et al (2021) NGS in hereditary ataxia: when rare becomes frequent. Int J Mol Sci 22:8490. https://doi.org/10.3390/ijms22168490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Galatolo D, Tessa A, Filla A, Santorelli FM (2018) Clinical application of next generation sequencing in hereditary spinocerebellar ataxia: increasing the diagnostic yield and broadening the ataxia-spasticity spectrum. A retrospective analysis. Neurogenetics 19:1–8. https://doi.org/10.1007/s10048-017-0532-6

    Article  CAS  PubMed  Google Scholar 

  61. Verdura E, Schlüter A, Fernández-Eulate G et al (2020) A deep intronic splice variant advises reexamination of presumably dominant SPG7 Cases. Ann Clin Transl Neurol 7:105–111. https://doi.org/10.1002/acn3.50967

    Article  CAS  PubMed  Google Scholar 

  62. Magri S, Fracasso V, Plumari M et al (2018) Concurrent AFG3L2 and SPG7 mutations associated with syndromic parkinsonism and optic atrophy with aberrant OPA1 processing and mitochondrial network fragmentation. Hum Mutat 39:2060–2071. https://doi.org/10.1002/humu.23658

    Article  CAS  PubMed  Google Scholar 

  63. Bis-Brewer DM, Gan-Or Z, Sleiman P et al (2020) Assessing non-Mendelian inheritance in inherited axonopathies. Genet Med 22:2114–2119. https://doi.org/10.1038/s41436-020-0924-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. De Braekeleer M, Giasson F, Mathieu J et al (1993) Genetic epidemiology of autosomal recessive spastic ataxia of Charlevoix-Saguenay in northeastern Quebec. Genet Epidemiol 10:17–25. https://doi.org/10.1002/gepi.1370100103

    Article  PubMed  Google Scholar 

  65. Xiromerisiou G, Dadouli K, Marogianni C et al (2020) A novel homozygous SACS mutation identified by whole exome sequencing-genotype phenotype correlations of all published cases. J Mol Neurosci 70:131–141. https://doi.org/10.1007/s12031-019-01410-z

    Article  CAS  PubMed  Google Scholar 

  66. Meijer IA, Dupré N, Brais B et al (2007) SPG4 founder effect in French Canadians with hereditary spastic paraplegia. Can J Neurol Sci 34:211–214. https://doi.org/10.1017/S0317167100006065

    Article  PubMed  Google Scholar 

  67. Zivony-Elboum Y, Westbroek W, Kfir N et al (2012) A founder mutation in Vps37A causes autosomal recessive complex hereditary spastic paraparesis. J Med Genet 49:462–472. https://doi.org/10.1136/jmedgenet-2012-100742

    Article  CAS  PubMed  Google Scholar 

  68. Rydning SL, Wedding IM, Koht J et al (2016) A founder mutation p. H701P identified as a major cause of SPG7 in Norway. Eur J Neurol 23:763–771. https://doi.org/10.1111/ene.12937

    Article  CAS  PubMed  Google Scholar 

  69. Becker A, Felici C, Lambert L et al (2023) Putative founder effect of Arg338* AP4M1 (SPG50) variant causing severe intellectual disability, epilepsy, and spastic paraplegia: Report of three families. Clin Genet 103:346–351. https://doi.org/10.1111/cge.14264

Download references

Acknowledgements

We thank Dr. Catherine J. Wrenn for her expert revision and editorial assistance.

Funding

The work in our laboratories is partially supported by grants from the Italian Ministry of Health (Ricerca Corrente and the 5 × 1000 voluntary contributions to FMS and AT; Ricerca Finalizzata RF-2019–12370417 to FMS; RF-2019–12370112 to AT), by the EJP-RD network “PROSPAX: an integrated multimodal progression chart in spastic ataxias” grant (project 441409627 to FMS). DG is partially supported by grants from the Fondation de l’Ataxie Charlevoix-Saguenay (www.arsacs.com) and the Cure-SPG56 program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Filippo M. Santorelli or Alessandra Tessa.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 39 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galatolo, D., Trovato, R., Scarlatti, A. et al. Power of NGS-based tests in HSP diagnosis: analysis of massively parallel sequencing in clinical practice. Neurogenetics 24, 147–160 (2023). https://doi.org/10.1007/s10048-023-00717-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-023-00717-9

Keywords

Navigation