Skip to main content
Log in

The enhanced electrical properties of TiO2-Nb2O5-ZnO varistor by sintering with the pre-synthesized B-Bi-O frit

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In this work, H3BO3 and Bi2O3 with the ratio 3:2 were melted at 750 °C and then quenched in water to produce B-Bi-O frit, which was sintered and co-doped with TiO2-0.60Nb2O5-0.50ZnO varistor ceramics. It is found that B-Bi-O frit can reduce the sintering temperature and improve the electrical properties of TiO2 ceramics. The best comprehensive electrical properties with the nonlinear coefficient up to 8.9, the breakdown voltage down to 4.92 V/mm, the relative dielectric constant of 4.47*105 and the leakage current of 0.102 mA are achieved by sintering the ceramics doped with 3 wt% B-Bi-O frit at 1400 °C. XRD analysis shows that B-Bi-O frit is an amorphous phase, and no second phase can be found in ceramics after the frit is doped. SEM morphologies display that B-Bi-O frit is beneficial to decrease the porosity while increase the grain size, and EDS mapping further presents no elements segregate on the grain boundary. XPS spectra demonstrate the coexistence of Ti3+ ions, Ti4+ ions and oxygen vacancies in TiO2 ceramics. As a result, it can be concluded that the enhancement of the electrical properties of TiO2 ceramics is mainly attributed to the following aspects: on the one hand, B-Bi-O frit helps to produce liquid phase sintering, which would reduce the porosity while increase grain size and promote solid solution of Nb2O5 and ZnO in TiO2 ceramic. On the other hand, B and Bi elements can also act as acceptor dopants in TiO2 ceramic to further promote grain semi-conductivity and increase grain boundary barrier height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as all raw date were generated by the authors.

References

  1. D.R. Clarke, Varistor ceramics. J. Am. Ceram. Soc. 82, 8 (1999)

    Google Scholar 

  2. S. Roy et al., Influence of sintering temperature on microstructure and electrical properties of Er2O3 added ZnO-V2O5-MnO2-Nb2O5 varistor ceramics. J. Alloys. Compd. 749, 687 (2018)

    Article  CAS  Google Scholar 

  3. J. Shi et al., ZnO varistor manufactured by composite nano-additives. Mater. Sci. Eng. B. 99, 344 (2003)

    Article  Google Scholar 

  4. K. Kang et al., Varistor properties of TiO2-Ta2O5-CaCO3 ceramics doped with GeO2. J. Ceram. Soc. Jpn. 126, 360 (2018)

    Article  CAS  Google Scholar 

  5. K.Y. Kang et al., Preparation and characterization of TiO2-Ta2O5-CaCO3 varistor ceramics by hot isostatic pressing (HIP) and post-annealing. Ceram. Silik. 65, 1 (2021)

    CAS  Google Scholar 

  6. J. Li et al., Role of second phase in (Nb, Ce, Si, Ca)-doped TiO2 varistor ceramics. Mater. Lett. 57, 3748 (2003)

    Article  CAS  Google Scholar 

  7. S. Yang, J. Wu, Effects of Nb2O5 in (Ba, Bi, Nb)-added TiO2 ceramic varistors. J. Mater. Res. 10, 345 (2011)

    Article  CAS  Google Scholar 

  8. S. Luo et al., Effect of Ta2O5 in (Ca, Si, Ta)-doped TiO2 ceramic varistors. Ceram. Int. 34, 1345 (2008)

    Article  CAS  Google Scholar 

  9. V.C. Sousa et al., The effect of Ta2O5 and Cr2O3 on the electrical properties of TiO2 varistors. J. Eur. Ceram. Soc. 22, 1277 (2002)

    Article  CAS  Google Scholar 

  10. F. Peng, D. Zhu, Effect of sintering temperature and Ho2O3 on the properties of TiO2-based varistors. Ceram. Int. 44, 21034 (2018)

    Article  CAS  Google Scholar 

  11. C.P. Li et al., Effect of sinter temperature on the electrical properties of TiO2-based capacitor–varistors. Mater. Lett. 57, 6 (2003)

    Google Scholar 

  12. F. Meng, Influence of sintering temperature on semi-conductivity and nonlinear electrical properties of TiO2-based varistor ceramics. Mater. Sci. Eng. B. 117, 77 (2005)

    Article  Google Scholar 

  13. X. Liao et al., Effects of Dy2O3 on the electrical properties of a (Nb2O5-Dy2O3-SiO2) co-doped TiO2 varistor. J. Electron. Mater. 50, 1963 (2021)

    Article  CAS  Google Scholar 

  14. J. Zhao et al., Effect of thermal treatment on TiO2 varistor properties in different atmospheres. J. Eur. Ceram. Soc. 37, 3353 (2017)

    Article  CAS  Google Scholar 

  15. S. Wan et al., Low-temperature sintering and electrical properties of ZnO-Bi2O3-TiO2-Co2O3-MnCO3-based varistor with Bi2O3-B2O3 frit for multilayer chip varistor applications. J. Am. Ceram. Soc. 93, 3319 (2010)

    Article  CAS  Google Scholar 

  16. F. Cui et al., Improving electrical properties of ZnO–Bi2O3–Sb2O3–MnO2 varistors by doping with pre-synthesized Bi–Si–O phase. J. Alloys. Compd. 836, 154692 (2020)

    Article  CAS  Google Scholar 

  17. W. Lin et al., Influence of Bi3Zn2Sb3O14 pre-synthesis phase on electrical properties of the ZnO-Bi2O3 based varistor ceramics. J. Alloys Compd. 834, 155070 (2020)

    Article  CAS  Google Scholar 

  18. X. Liao et al., Synergistic effect of co-doping of nano-sized ZnO and Nb2O5 on the enhanced nonlinear coefficient of TiO2 varistor with low breakdown voltage. J. Alloys. Compd. 886, 161170 (2021)

    Article  CAS  Google Scholar 

  19. K. Kang et al., Preparation and characterization of high nonlinear TiO2-based varistor ceramics. J. Mater. Sci. Mater. Electron. 32, 9841 (2021)

    Article  CAS  Google Scholar 

  20. F. Peng et al., Influence of GeO2 on the microstructure and electrical properties of TiO2-Nb2O5-Ho2O3-SiO2 varistors. Mater. Chem. Phys. 243, 122638 (2020)

    Article  CAS  Google Scholar 

  21. F. Cui et al., Low temperature sintering ZnO - Bi2O3 based varistor ceramics with low electrical breakdown voltage and high nonlinear coefficient. Ceram. Int. 47, 4118 (2021)

    Article  CAS  Google Scholar 

  22. M.M. Shahraki et al., Novel multifunctional capacitor-varistor ceramics based on SnO2. Ceram. Int. 44, 20386 (2018)

    Article  Google Scholar 

  23. S.R. Dhage, V. Ravi, Influence of various donors on nonlinear I-V characteristics of tin dioxide ceramics. Appl. Phys. Lett. 83, 4539 (2003)

    Article  CAS  Google Scholar 

  24. X. Wei et al., Colossal permittivity properties of Zn, Nb co-doped TiO2 with different phase structures. J. Mater. Chem. C. 3, 11005 (2015)

    Article  CAS  Google Scholar 

  25. J. Li et al., Effects of doping Y2O3 on the microstructure and electrical properties of ZnO-Bi2O3−based varistor ceramics. J. Electroceram. 46, 131 (2021)

    Article  CAS  Google Scholar 

  26. W. Liu et al., Improvement of properties of ZnO varistors by low-temperature two-step sintering method. J. Mater. Sci. Mater. Electron. 33, 23918–23926 (2022)

    Article  CAS  Google Scholar 

  27. X. Wu et al., Effect of B2O3 concentration and sintering temperature on microstructure and electrical properties in the ZnO-Bi2O3-based varistors. J. Electron. Mater. 48, 7704 (2019)

    Article  CAS  Google Scholar 

  28. M.N. Svenson et al., Raman spectroscopy study of pressure-induced structural changes in sodium borate glass. J. Non-Cryst. Solids. 443, 130 (2016)

    Article  CAS  Google Scholar 

  29. Y. Cheng et al., Structure and crystallization kinetics of Bi2O3–B2O3 glasses. Thermochim. Acta. 444, 173 (2006)

    Article  CAS  Google Scholar 

  30. J. Li et al., Microstructure and dielectric properties of (Nb + In) co-doped rutile TiO2 ceramics. J. Appl. Phys. 116, 074105 (2014)

    Article  Google Scholar 

  31. X. Cheng et al., Colossal permittivity in ceramics of TiO2 Co-doped with niobium and trivalent cation. J. Mater. Chem. A. 3, 5805 (2015)

    Article  CAS  Google Scholar 

  32. W. Hu et al., Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater. 12, 821 (2013)

    Article  CAS  Google Scholar 

  33. E. Ramos Moore et al., Raman and x-ray photoelectron spectroscopy study of ferroelectric switching in Pb(Nb, Zr, Ti)O3 thin films. J. Appl. Phys. 111, 014108 (2012)

    Article  Google Scholar 

  34. Z. Li, J. Wu, Novel titanium dioxide ceramics containing bismuth and antimony. J. Materiomics. 3, 112 (2017)

    Article  Google Scholar 

  35. S. Paul Choudhury et al., BN quantum dots decorated ZnO nanoplates sensor for enhanced detection of BTEX gases. J. Alloys. Compd. 815, 152376 (2020)

    Article  CAS  Google Scholar 

  36. L. Li et al., The effect of segregation structure on the colossal permittivity properties of (La0.5Nb0.5)xTi1-xO2 ceramics. J. Mater. Chem. C. 6, 12 (2018)

    Google Scholar 

  37. Y. Gong et al., Electrical properties of Ta2O5-doped TiO2 varistor ceramics sintered at low-temperature. Ceram. Int. 41, 9183 (2015)

    Article  CAS  Google Scholar 

  38. O.A. Desouky, K.E. Rady, Improvement of sintering, nonlinear electrical, and dielectric properties of ZnO-based varistors doped with TiO2. Chin. Phys. B. 25, 068402 (2016)

    Article  Google Scholar 

  39. K. Kang et al., Ge-added TiO2–Ta2O5–CaCO3 varistor ceramics. Ceram. Int. 42, 4739 (2016)

    Article  CAS  Google Scholar 

  40. F. Liu et al., Influence of B2O3 additives on microstructure and electrical properties of ZnO–Bi2O3–Sb2O3-based varistors. J. Alloys Compd. 509, L56 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate Wang Hui from the Analytical & Testing Center of Sichuan University for her help with SEM and EDS characterization.

Funding

This research was supported by the Fundamental Research Funds for the Central Universities of People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dachuan Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4126 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Liao, X., Pu, Y. et al. The enhanced electrical properties of TiO2-Nb2O5-ZnO varistor by sintering with the pre-synthesized B-Bi-O frit. J Electroceram 51, 1–11 (2023). https://doi.org/10.1007/s10832-023-00312-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-023-00312-2

Keywords

Navigation