Skip to main content
Log in

Recently developed glycosphingolipid probes and their dynamic behavior in cell plasma membranes as revealed by single-molecule imaging

  • Mini Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Glycosphingolipids, including gangliosides, are representative lipid raft markers that perform a variety of physiological roles in cell membranes. However, studies aimed at revealing their dynamic behavior in living cells are rare, mostly due to a lack of suitable fluorescent probes. Recently, the ganglio-series, lacto-series, and globo-series glycosphingolipid probes, which mimic the behavior of the parental molecules in terms of partitioning to the raft fraction, were developed by conjugating hydrophilic dyes to the terminal glycans of glycosphingolipids using state-of-art entirely chemical-based synthetic techniques. High-speed, single-molecule observation of these fluorescent probes revealed that gangliosides were scarcely trapped in small domains (100 nm in diameter) for more than 5 ms in steady-state cells, suggesting that rafts including gangliosides were always moving and very small. Furthermore, dual-color, single-molecule observations clearly showed that homodimers and clusters of GPI-anchored proteins were stabilized by transiently recruiting sphingolipids, including gangliosides, to form homodimer rafts and the cluster rafts, respectively. In this review, we briefly summarize recent studies, the development of a variety of glycosphingolipid probes as well as the identification of the raft structures including gangliosides in living cells by single-molecule imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Hakomori, S.: Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu Rev Biochem 50(1), 733–764 (1981). https://doi.org/10.1146/annurev.bi.50.070181.003505

    Article  CAS  PubMed  Google Scholar 

  2. Hakomori, S.-I., Handa, K., Iwabuchi, K., Yamamura, S., Prinetti, A.: New insights in glycosphingolipid function: “glycosignaling domain,” a cell surface assembly of glycosphingolipids with signal transducer molecules, involved in cell adhesion coupled with signaling. Glycobiology 8(10), xi-xviii (1998). https://doi.org/10.1093/oxfordjournals.glycob.a018822

  3. Hakomori, S.: Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res 56(23), 5309–5318 (1996)

    CAS  PubMed  Google Scholar 

  4. Hakomori, S.: Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci USA 99(16), 10231–10233 (2002). https://doi.org/10.1073/pnas.172380699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mattner, J., DeBord, K.L., Ismail, N., Goff, R.D., Cantu, C., Zhou, D., Saint-Mezard, P., Wang, V., Gao, Y., Yin, N., Hoebe, K., Schneewind, O., Walker, D., Beutler, B., Teyton, L., Savage, P.B., Bendelac, A.: Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434(7032), 525–529 (2005). https://doi.org/10.1038/nature03408

    Article  CAS  PubMed  Google Scholar 

  6. Zhou, D., Mattner, J., Cantu, C., 3rd., Schrantz, N., Yin, N., Gao, Y., Sagiv, Y., Hudspeth, K., Wu, Y.P., Yamashita, T., Teneberg, S., Wang, D., Proia, R.L., Levery, S.B., Savage, P.B., Teyton, L., Bendelac, A.: Lysosomal glycosphingolipid recognition by NKT cells. Science 306(5702), 1786–1789 (2004). https://doi.org/10.1126/science.1103440

    Article  CAS  PubMed  Google Scholar 

  7. Schnaar, R.L.: Chapter three - the biology of gangliosides. In: Baker, D.C. (ed.) Advances in carbohydrate chemistry and biochemistry, vol. 76, pp. 113–148. Academic Press (2019). https://doi.org/10.1016/bs.accb.2018.09.002

  8. Wang, X.Q., Sun, P., Paller, A.S.: Ganglioside GM3 blocks the activation of epidermal growth factor receptor induced by integrin at specific tyrosine sites. J Biol Chem 278(49), 48770–48778 (2003). https://doi.org/10.1074/jbc.M308818200

    Article  CAS  PubMed  Google Scholar 

  9. Yoon, S.J., Nakayama, K., Hikita, T., Handa, K., Hakomori, S.I.: Epidermal growth factor receptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proc Natl Acad Sci USA 103(50), 18987–18991 (2006). https://doi.org/10.1073/pnas.0609281103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kawashima, N., Yoon, S.J., Itoh, K., Nakayama, K.: Tyrosine kinase activity of epidermal growth factor receptor is regulated by GM3 binding through carbohydrate to carbohydrate interactions. J Biol Chem 284(10), 6147–6155 (2009). https://doi.org/10.1074/jbc.M808171200

    Article  CAS  PubMed  Google Scholar 

  11. Guan, F., Handa, K., Hakomori, S.I.: Regulation of epidermal growth factor receptor through interaction of ganglioside GM3 with GlcNAc of N-linked glycan of the receptor: demonstration in ldlD cells. Neurochem Res 36(9), 1645–1653 (2011). https://doi.org/10.1007/s11064-010-0379-9

    Article  CAS  PubMed  Google Scholar 

  12. Kabayama, K., Sato, T., Saito, K., Loberto, N., Prinetti, A., Sonnino, S., Kinjo, M., Igarashi, Y., Inokuchi, J.: Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc Natl Acad Sci USA 104(34), 13678–13683 (2007). https://doi.org/10.1073/pnas.0703650104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Prendergast, J., Umanah, G.K., Yoo, S.W., Lagerlöf, O., Motari, M.G., Cole, R.N., Huganir, R.L., Dawson, T.M., Dawson, V.L., Schnaar, R.L.: Ganglioside regulation of AMPA receptor trafficking. J Neurosci 34(39), 13246–13258 (2014). https://doi.org/10.1523/jneurosci.1149-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Iwabuchi, K., Yamamura, S., Prinetti, A., Handa, K., Hakomori, S.-I.: GM3-enriched microdomain involved in cell adhesion and signal transduction through carbohydrate-carbohydrate interaction in mouse melanoma B16 cells. J Biol Chem 273(15), 9130–9138 (1998). https://doi.org/10.1074/jbc.273.15.9130

  15. Iwabuchi, K., Handa, K., Hakomori, S.-I.: Separation of “Glycosphingolipid signaling domain” from caveolin-containing membrane fraction in mouse melanoma B16 cells and its role in cell adhesion coupled with signaling. J Biol Chem 273(50), 33766–33773 (1998). https://doi.org/10.1074/jbc.273.50.33766

    Article  CAS  PubMed  Google Scholar 

  16. Fishman, P.H.: Role of membrane gangliosides in the binding and action of bacterial toxins. J Membr Biol 69(2), 85–97 (1982). https://doi.org/10.1007/BF01872268

    Article  CAS  PubMed  Google Scholar 

  17. Zuverink, M., Barbieri, J.T.: Chapter eleven - protein toxins that utilize gangliosides as host receptors. In: Schnaar, R.L., Lopez, P.H.H. (eds.) Progress in molecular biology and translational science, vol. 156, pp. 325–354. Academic Press. (2018). https://doi.org/10.1016/bs.pmbts.2017.11.010

  18. Nguyen, L., McCord, K.A., Bui, D.T., Bouwman, K.M., Kitova, E.N., Elaish, M., Kumawat, D., Daskhan, G.C., Tomris, I., Han, L., Chopra, P., Yang, T.-J., Willows, S.D., Mason, A.L., Mahal, L.K., Lowary, T.L., West, L.J., Hsu, S.-T.D., Hobman, T., Tompkins, S.M., Boons, G.-J., de Vries, R.P., Macauley, M.S., Klassen, J.S.: Sialic acid-containing glycolipids mediate binding and viral entry of SARS-CoV-2. Nat Chem Biol 18(1), 81–90 (2022). https://doi.org/10.1038/s41589-021-00924-1

    Article  CAS  PubMed  Google Scholar 

  19. Belotserkovsky, I., Brunner, K., Pinaud, L., Rouvinski, A., Dellarole, M., Baron, B., Dubey, G., Samassa, F., Parsot, C., Sansonetti, P., Phalipon, A.: Glycan-glycan interaction determines shigella tropism toward human T lymphocytes. mBio 9(1) (2018). https://doi.org/10.1128/mBio.02309-17

  20. Yanagisawa, K., Odaka, A., Suzuki, N., Ihara, Y.: GM1 ganglioside-bound amyloid beta-protein (A beta): a possible form of preamyloid in Alzheimer’s disease. Nat Med 1(10), 1062–1066 (1995). https://doi.org/10.1038/nm1095-1062

    Article  CAS  PubMed  Google Scholar 

  21. Matsuzaki, K., Kato, K., Yanagisawa, K.: Ganglioside-mediated assembly of amyloid β-protein: Roles in Alzheimer’s disease. Prog Mol Biol Transl Sci 156, 413–434 (2018). https://doi.org/10.1016/bs.pmbts.2017.10.005

    Article  CAS  PubMed  Google Scholar 

  22. Matsuzaki, K.: Aβ-ganglioside interactions in the pathogenesis of Alzheimer's disease. Biochim Biophys Acta Biomembr 1862(8), 183233 (2020). https://doi.org/10.1016/j.bbamem.2020.183233

  23. Yagi-Utsumi, M., Kato, K.: Conformational variability of amyloid-β and the morphological diversity of its aggregates. Molecules (2022). https://doi.org/10.3390/molecules27154787

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kelm, S., Schauer, R.: Sialic acids in molecular and cellular interactions. Int Rev Cytol 175, 137–240 (1997). https://doi.org/10.1016/s0074-7696(08)62127-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schauer, R.: Sialic acids as regulators of molecular and cellular interactions. Curr Opin Struct Biol 19(5), 507–514 (2009). https://doi.org/10.1016/j.sbi.2009.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schauer, R.: Achievements and challenges of sialic acid research. Glycoconj J 17(7), 485–499 (2000). https://doi.org/10.1023/A:1011062223612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Harder, T., Scheiffele, P., Verkade, P., Simons, K.: Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141(4), 929–942 (1998). https://doi.org/10.1083/jcb.141.4.929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sonnino, S., Prinetti, A.: Membrane domains and the “lipid raft” concept. Curr Med Chem 20(1), 4–21 (2013)

    CAS  PubMed  Google Scholar 

  29. Prinetti, A., Chigorno, V., Prioni, S., Loberto, N., Marano, N., Tettamanti, G., Sonnino, S.: Changes in the lipid turnover, composition, and organization, as sphingolipid-enriched membrane domains, in rat cerebellar granule cells developing in vitro. J Biol Chem 276(24), 21136–21145 (2001). https://doi.org/10.1074/jbc.M010666200

    Article  CAS  PubMed  Google Scholar 

  30. Hammond, A.T., Heberle, F.A., Baumgart, T., Holowka, D., Baird, B., Feigenson, G.W.: Crosslinking a lipid raft component triggers liquid ordered-liquid disordered phase separation in model plasma membranes. Proc Natl Acad Sci USA 102(18), 6320–6325 (2005). https://doi.org/10.1073/pnas.0405654102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lingwood, D., Binnington, B., Rog, T., Vattulainen, I., Grzybek, M., Coskun, U., Lingwood, C.A., Simons, K.: Cholesterol modulates glycolipid conformation and receptor activity. Nat Chem Biol 7(5), 260–262 (2011). https://doi.org/10.1038/nchembio.551

    Article  CAS  PubMed  Google Scholar 

  32. Kabbani, A.M., Raghunathan, K., Lencer, W.I., Kenworthy, A.K., Kelly, C.V.: Structured clustering of the glycosphingolipid GM1 is required for membrane curvature induced by cholera toxin. Proc Natl Acad Sci USA 117(26), 14978–14986 (2020). https://doi.org/10.1073/pnas.2001119117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kusumi, A., Suzuki, K.: Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochim Biophys Acta 1746(3), 234–251 (2005). https://doi.org/10.1016/j.bbamcr.2005.10.001

    Article  CAS  PubMed  Google Scholar 

  34. Tanaka, K.A., Suzuki, K.G., Shirai, Y.M., Shibutani, S.T., Miyahara, M.S., Tsuboi, H., Yahara, M., Yoshimura, A., Mayor, S., Fujiwara, T.K., Kusumi, A.: Membrane molecules mobile even after chemical fixation. Nat Methods 7(11), 865–866 (2010). https://doi.org/10.1038/nmeth.f.314

    Article  CAS  PubMed  Google Scholar 

  35. Schwarzmann, G., Wendeler, M., Sandhoff, K.: Synthesis of novel NBD-GM1 and NBD-GM2 for the transfer activity of GM2-activator protein by a FRET-based assay system. Glycobiology 15(12), 1302–1311 (2005). https://doi.org/10.1093/glycob/cwj018

    Article  CAS  PubMed  Google Scholar 

  36. Eggeling, C., Ringemann, C., Medda, R., Schwarzmann, G., Sandhoff, K., Polyakova, S., Belov, V.N., Hein, B., von Middendorff, C., Schonle, A., Hell, S.W.: Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457(7233), 1159–1162 (2009). https://doi.org/10.1038/nature07596

    Article  CAS  PubMed  Google Scholar 

  37. Polyakova, S.M., Belov, V.N., Yan, S.F., Eggeling, C., Ringemann, C., Schwarzmann, G., de Meijere, A., Hell, S.W.: New GM1 ganglioside derivatives for selective single and double labelling of the natural glycosphingolipid skeleton. Eur J Org Chem 2009(30), 5162–5177 (2009). https://doi.org/10.1002/ejoc.200900645

    Article  CAS  Google Scholar 

  38. Chinnapen, D.J., Hsieh, W.T., te Welscher, Y.M., Saslowsky, D.E., Kaoutzani, L., Brandsma, E., D’Auria, L., Park, H., Wagner, J.S., Drake, K.R., Kang, M., Benjamin, T., Ullman, M.D., Costello, C.E., Kenworthy, A.K., Baumgart, T., Massol, R.H., Lencer, W.I.: Lipid sorting by ceramide structure from plasma membrane to ER for the cholera toxin receptor ganglioside GM1. Dev Cell 23(3), 573–586 (2012). https://doi.org/10.1016/j.devcel.2012.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sezgin, E., Levental, I., Grzybek, M., Schwarzmann, G., Mueller, V., Honigmann, A., Belov, V.N., Eggeling, C., Coskun, U., Simons, K., Schwille, P.: Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochim Biophys Acta 1818(7), 1777–1784 (2012). https://doi.org/10.1016/j.bbamem.2012.03.007

    Article  CAS  PubMed  Google Scholar 

  40. Komura, N., Suzuki, K.G., Ando, H., Konishi, M., Koikeda, M., Imamura, A., Chadda, R., Fujiwara, T.K., Tsuboi, H., Sheng, R., Cho, W., Furukawa, K., Furukawa, K., Yamauchi, Y., Ishida, H., Kusumi, A., Kiso, M.: Raft-based interactions of gangliosides with a GPI-anchored receptor. Nat Chem Biol 12(6), 402–410 (2016). https://doi.org/10.1038/nchembio.2059

    Article  CAS  PubMed  Google Scholar 

  41. Komura, N., Suzuki, K.G.N., Ando, H., Konishi, M., Imamura, A., Ishida, H., Kusumi, A., Kiso, M.: Syntheses of fluorescent gangliosides for the studies of raft domains. Methods Enzymol 597, 239–263 (2017). https://doi.org/10.1016/bs.mie.2017.06.004

    Article  CAS  PubMed  Google Scholar 

  42. Suzuki, K.G.N., Ando, H., Komura, N., Fujiwara, T.K., Kiso, M., Kusumi, A.: Development of new ganglioside probes and unraveling of raft domain structure by single-molecule imaging. Biochim Biophys Acta Gen Subj 1861(10), 2494–2506 (2017). https://doi.org/10.1016/j.bbagen.2017.07.012

    Article  CAS  PubMed  Google Scholar 

  43. Konishi, M., Komura, N., Hirose, Y., Suganuma, Y., Tanaka, H.N., Imamura, A., Ishida, H., Suzuki, K.G.N., Ando, H.: Development of fluorescent ganglioside GD3 and GQ1b analogs for elucidation of raft-associated interactions. J Org Chem 85(24), 15998–16013 (2020). https://doi.org/10.1021/acs.joc.0c01493

    Article  CAS  PubMed  Google Scholar 

  44. Cheresh, D.A., Pierschbacher, M.D., Herzig, M.A., Mujoo, K.: Disialogangliosides GD2 and GD3 are involved in the attachment of human melanoma and neuroblastoma cells to extracellular matrix proteins. J Cell Biol 102(3), 688–696 (1986). https://doi.org/10.1083/jcb.102.3.688

    Article  CAS  PubMed  Google Scholar 

  45. Tsuji, S., Arita, M., Nagai, Y.: GQ1b, a bioactive ganglioside that exhibits novel nerve growth factor (NGF)-like activities in the two neuroblastoma cell lines. J Biochem 94(1), 303–306 (1983). https://doi.org/10.1093/oxfordjournals.jbchem.a134344

    Article  CAS  PubMed  Google Scholar 

  46. Ohkawa, Y., Zhang, P., Momota, H., Kato, A., Hashimoto, N., Ohmi, Y., Bhuiyan, R.H., Farhana, Y., Natsume, A., Wakabayashi, T., Furukawa, K., Furukawa, K.: Lack of GD3 synthase (St8sia1) attenuates malignant properties of gliomas in genetically engineered mouse model. Cancer Sci 112(9), 3756–3768 (2021). https://doi.org/10.1111/cas.15032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Iwasawa, T., Zhang, P., Ohkawa, Y., Momota, H., Wakabayashi, T., Ohmi, Y., Bhuiyan, R.H., Furukawa, K., Furukawa, K.: Enhancement of malignant properties of human glioma cells by ganglioside GD3/GD2. Int J Oncol 52(4), 1255–1266 (2018). https://doi.org/10.3892/ijo.2018.4266

    Article  CAS  PubMed  Google Scholar 

  48. Yamaguchi, E., Komura, N., Tanaka, H.-N., Imamura, A., Ishida, H., Groux-Degroote, S., Mühlenhoff, M., Suzuki, K.G.N., Ando, H.: Fluorescent GD2 analog for single-molecule imaging. Glycoconj J 40(2), 247–257 (2023). https://doi.org/10.1007/s10719-023-10102-1

    Article  CAS  PubMed  Google Scholar 

  49. Asano, S., Pal, R., Tanaka, H.N., Imamura, A., Ishida, H., Suzuki, K.G.N., Ando, H.: Development of fluorescently labeled SSEA-3, SSEA-4, and Globo-H glycosphingolipids for elucidating molecular interactions in the cell membrane. Int J Mol Sci 20(24) (2019). https://doi.org/10.3390/ijms20246187

  50. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., Yamanaka, S.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5), 861–872 (2007). https://doi.org/10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  51. Hung, T.C., Lin, C.W., Hsu, T.L., Wu, C.Y., Wong, C.H.: Investigation of SSEA-4 binding protein in breast cancer cells. J Am Chem Soc 135(16), 5934–5937 (2013). https://doi.org/10.1021/ja312210c

    Article  CAS  PubMed  Google Scholar 

  52. Takahashi, M., Komura, N., Yoshida, Y., Yamaguchi, E., Hasegawa, A., Tanaka, H.N., Imamura, A., Ishida, H., Suzuki, K.G.N., Ando, H.: Development of lacto-series ganglioside fluorescent probe using late-stage sialylation and behavior analysis with single-molecule imaging. RSC Chem Biol 3(7), 868–885 (2022). https://doi.org/10.1039/d2cb00083k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wikstrand, C.J., Longee, D.C., McLendon, R.E., Fuller, G.N., Friedman, H.S., Fredman, P., Svennerholm, L., Bigner, D.D.: Lactotetraose series ganglioside 3’,6’-isoLD1 in tumors of central nervous and other systems in vitro and in vivo. Cancer Res 53(1), 120–126 (1993)

    CAS  PubMed  Google Scholar 

  54. Sahl, S.J., Leutenegger, M., Hilbert, M., Hell, S.W., Eggeling, C.: Fast molecular tracking maps nanoscale dynamics of plasma membrane lipids. Proc Natl Acad Sci USA 107(15), 6829–6834 (2010). https://doi.org/10.1073/pnas.0912894107

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lenne, P.F., Wawrezinieck, L., Conchonaud, F., Wurtz, O., Boned, A., Guo, X.J., Rigneault, H., He, H.T., Marguet, D.: Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. Embo J 25, 3245–3256 (2006). https://doi.org/10.1038/sj.emboj.7601214

  56. Wenger, J., Conchonaud, F., Dintinger, J., Wawrezinieck, L., Ebbesen, T.W., Rigneault, H., Marguet, D., Lenne, P.F.: Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization. Biophys J 92(3), 913–919 (2007). https://doi.org/10.1529/biophysj.106.096586

    Article  CAS  PubMed  Google Scholar 

  57. Kinoshita, M., Suzuki, K.G., Matsumori, N., Takada, M., Ano, H., Morigaki, K., Abe, M., Makino, A., Kobayashi, T., Hirosawa, K.M., Fujiwara, T.K., Kusumi, A., Murata, M.: Raft-based sphingomyelin interactions revealed by new fluorescent sphingomyelin analogs. J Cell Biol 216(4), 1183–1204 (2017). https://doi.org/10.1083/jcb.201607086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kinoshita, M., Suzuki, K.G.N., Murata, M., Matsumori, N.: Evidence of lipid rafts based on the partition and dynamic behavior of sphingomyelins. Chem Phys Lipids 215, 84–95 (2018). https://doi.org/10.1016/j.chemphyslip.2018.07.002

    Article  CAS  PubMed  Google Scholar 

  59. Fujiwara, T., Ritchie, K., Murakoshi, H., Jacobson, K., Kusumi, A.: Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol 157(6), 1071–1081 (2002). https://doi.org/10.1083/jcb.200202050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Murase, K., Fujiwara, T., Umemura, Y., Suzuki, K., Iino, R., Yamashita, H., Saito, M., Murakoshi, H., Ritchie, K., Kusumi, A.: Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques. Biophys J 86(6), 4075–4093 (2004). https://doi.org/10.1529/biophysj.103.035717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fujiwara, T.K., Iwasawa, K., Kalay, Z., Tsunoyama, T.A., Watanabe, Y., Umemura, Y.M., Murakoshi, H., Suzuki, K.G., Nemoto, Y.L., Morone, N., Kusumi, A.: Confined diffusion of transmembrane proteins and lipids induced by the same actin meshwork lining the plasma membrane. Mol Biol Cell 27(7), 1101–1119 (2016). https://doi.org/10.1091/mbc.E15-04-0186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Umemura, Y.M., Vrljic, M., Nishimura, S.Y., Fujiwara, T.K., Suzuki, K.G., Kusumi, A.: Both MHC class II and its GPI-anchored form undergo hop diffusion as observed by single-molecule tracking. Biophys J 95(1), 435–450 (2008). https://doi.org/10.1529/biophysj.107.123018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Suzuki, K., Ritchie, K., Kajikawa, E., Fujiwara, T., Kusumi, A.: Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques. Biophys J 88(5), 3659–3680 (2005). https://doi.org/10.1529/biophysj.104.048538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Morone, N., Fujiwara, T., Murase, K., Kasai, R.S., Ike, H., Yuasa, S., Usukura, J., Kusumi, A.: Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography. J Cell Biol 174(6), 851–862 (2006). https://doi.org/10.1083/jcb.200606007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kusumi, A., Suzuki, K., Koyasako, K.: Mobility and cytoskeletal interactions of cell adhesion receptors. Curr Opin Cell Biol 11(5), 582–590 (1999). https://doi.org/10.1016/s0955-0674(99)00020-4

    Article  CAS  PubMed  Google Scholar 

  66. Kusumi, A., Koyama-Honda, I., Suzuki, K.: Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic 5(4), 213–230 (2004). https://doi.org/10.1111/j.1600-0854.2004.0178.x

    Article  CAS  PubMed  Google Scholar 

  67. Kusumi, A., Shirai, Y.M., Koyama-Honda, I., Suzuki, K.G., Fujiwara, T.K.: Hierarchical organization of the plasma membrane: investigations by single-molecule tracking vs. fluorescence correlation spectroscopy. Febs Lett 584(9), 1814–1823 (2010). https://doi.org/10.1016/j.febslet.2010.02.047

  68. Kusumi, A., Suzuki, K.G., Kasai, R.S., Ritchie, K., Fujiwara, T.K.: Hierarchical mesoscale domain organization of the plasma membrane. Trends Biochem Sci 36(11), 604–615 (2011). https://doi.org/10.1016/j.tibs.2011.08.001

    Article  CAS  PubMed  Google Scholar 

  69. Ritchie, K., Shan, X.Y., Kondo, J., Iwasawa, K., Fujiwara, T., Kusumi, A.: Detection of non-Brownian diffusion in the cell membrane in single molecule tracking. Biophys J 88(3), 2266–2277 (2005). https://doi.org/10.1529/biophysj.104.054106

    Article  CAS  PubMed  Google Scholar 

  70. Suzuki, K.G., Kasai, R.S., Hirosawa, K.M., Nemoto, Y.L., Ishibashi, M., Miwa, Y., Fujiwara, T.K., Kusumi, A.: Transient GPI-anchored protein homodimers are units for raft organization and function. Nat Chem Biol 8(9), 774–783 (2012). https://doi.org/10.1038/nchembio.1028

    Article  CAS  PubMed  Google Scholar 

  71. Suzuki, K.G., Kasai, R.S., Fujiwara, T.K., Kusumi, A.: Single-molecule imaging of receptor-receptor interactions. Methods Cell Biol 117, 373–390 (2013). https://doi.org/10.1016/b978-0-12-408143-7.00020-7

    Article  CAS  PubMed  Google Scholar 

  72. Suzuki, K.G.: New insights into the organization of plasma membrane and its role in signal transduction. Int Rev Cell Mol Biol 317, 67–96 (2015). https://doi.org/10.1016/bs.ircmb.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  73. Suzuki, K.G.: Single-Molecule Imaging of Signal Transduction via GPI-Anchored Receptors. Methods Mol Biol 1376, 229–238 (2016). https://doi.org/10.1007/978-1-4939-3170-5_19

    Article  CAS  PubMed  Google Scholar 

  74. Tiwari, S.S., Shirai, Y.M., Nemoto, Y.L., Kojima, K., Suzuki, K.G.N.: Native prion protein homodimers are destabilized by oligomeric amyloid β 1–42 species as shown by single-molecule imaging. NeuroReport 29(2), 106–111 (2018). https://doi.org/10.1097/wnr.0000000000000916

    Article  CAS  PubMed  Google Scholar 

  75. Suzuki, K.G., Fujiwara, T.K., Sanematsu, F., Iino, R., Edidin, M., Kusumi, A.: GPI-anchored receptor clusters transiently recruit Lyn and G alpha for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J Cell Biol 177(4), 717–730 (2007). https://doi.org/10.1083/jcb.200609174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Suzuki, K.G., Fujiwara, T.K., Edidin, M., Kusumi, A.: Dynamic recruitment of phospholipase C gamma at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca2+ signaling: single-molecule tracking study 2. J Cell Biol 177(4), 731–742 (2007). https://doi.org/10.1083/jcb.200609175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Suzuki, K.G.: Lipid rafts generate digital-like signal transduction in cell plasma membranes. Biotechnol J 7(6), 753–761 (2012). https://doi.org/10.1002/biot.201100360

    Article  CAS  PubMed  Google Scholar 

  78. Kusumi, A., Fujiwara, T.K., Chadda, R., Xie, M., Tsunoyama, T.A., Kalay, Z., Kasai, R.S., Suzuki, K.G.: Dynamic organizing principles of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of Singer and Nicolson’s fluid-mosaic model. Annu Rev Cell Dev Biol 28, 215–250 (2012). https://doi.org/10.1146/annurev-cellbio-100809-151736

    Article  CAS  PubMed  Google Scholar 

  79. Koyama-Honda, I., Fujiwara, T.K., Kasai, R.S., Suzuki, K.G.N., Kajikawa, E., Tsuboi, H., Tsunoyama, T.A., Kusumi, A.: High-speed single-molecule imaging reveals signal transduction by induced transbilayer raft phases. J Cell Biol 219(12) (2020). https://doi.org/10.1083/jcb.202006125

  80. Raghupathy, R., Anilkumar, A.A., Polley, A., Singh, P.P., Yadav, M., Johnson, C., Suryawanshi, S., Saikam, V., Sawant, S.D., Panda, A., Guo, Z., Vishwakarma, R.A., Rao, M., Mayor, S.: Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins. Cell 161(3), 581–594 (2015). https://doi.org/10.1016/j.cell.2015.03.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Saha, S., Das, A., Patra, C., Anilkumar, A.A., Sil, P., Mayor, S., Rao, M.: Active emulsions in living cell membranes driven by contractile stresses and transbilayer coupling. Proc Natl Acad Sci USA 119(30), e2123056119 (2022). https://doi.org/10.1073/pnas.2123056119

  82. Arumugam, S., Schmieder, S., Pezeshkian, W., Becken, U., Wunder, C., Chinnapen, D., Ipsen, J.H., Kenworthy, A.K., Lencer, W., Mayor, S., Johannes, L.: Ceramide structure dictates glycosphingolipid nanodomain assembly and function. Nat Commun 12(1), 3675 (2021). https://doi.org/10.1038/s41467-021-23961-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Nos. JP21H02424 (K. G. N. S.), JP20K21387 (K. G. N. S.), JP20K15412 (N. K.), JP18H0392 (H. A.); JSPS Core-to-Core Program Grant No. JPJSCCA20200007 (H.A.); Japan Science and Technology Agency (JST) CREST “Elucidation of Biological Mechanisms of Extracellular Fine Particles and the Control System” Grant No. JPMJCR18H2 (K. G. N. S. and H. A.); JST FOREST Grant No. JPMJFR2004 (N.K.); the Takeda Foundation (K. G. N. S. and H. A.); the Mizutani foundation for Glycoscience (K. G. N. S. and H. A.); SUNBOR Grant from the Suntory Foundation for Life Sciences (N. K.).

Funding

This work was supported by the funding organizations listed in the Acknowledgments

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the paper, and participated in the revisions.

Corresponding authors

Correspondence to Kenichi G. N. Suzuki, Naoko Komura or Hiromune Ando.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethics approval

This work does not include any studies involving humans or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, K.G.N., Komura, N. & Ando, H. Recently developed glycosphingolipid probes and their dynamic behavior in cell plasma membranes as revealed by single-molecule imaging. Glycoconj J 40, 305–314 (2023). https://doi.org/10.1007/s10719-023-10116-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-023-10116-9

Keywords

Navigation