Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Catalytic One-pot Solvent Free Synthesis, Biological Activity, and Docking Study of New Series of 1, 3-thiazolidine-4-one Derivatives Derived from 2- (P-tolyl) Benzoxazol-5-amine

Author(s): Hussein Kaka Ahmed Khudhur* and Awaz Jamil Hussein

Volume 21, Issue 2, 2024

Published on: 23 June, 2023

Page: [210 - 223] Pages: 14

DOI: 10.2174/1570179420666230428125251

Price: $65

Abstract

Objective: In this study, a simple triethylammonium salt of phosphoric acid (triethylammonium dihydrogen phosphate) (4) in the liquid state was utilized as an inexpensive, efficient one-pot three components, solvent-free synthesis of thiazolidine-4-one derivatives, with good to excellent yields. Techniques such as FT-IR, 1H-NMR, 13C-NMR, 13C-NMR-DEPT-135, and MS. were used for the structural elucidation. The high biotic efficiency of the newly obtained compounds was confirmed by in vitro antimicrobial action against Gram-positive (S. Aureus), Gram-negative bacteria (P. Aeruginosa and E. Coli) and antifungal activity (C. Albicans) via microplate titer dilution technique. Finally, a molecular docking study was performed with a resolved crystal structure of S. Aureus D-alanine alanyl carrier protein ligase (PDB ID: 7VHV). This investigation aimed to synthesize a new series of thiazolidine-4-one derivatives combined with benzoxazole moiety.

Material and Methods: Ionic liquid assistance one-pot solvent-free synthesis method used to synthesize a new series of thiazolidine-4-one derivative 10(a-e).

Results: Structural identification of new synthesis and biological evaluation via techniques of (IR, 1H-NMR, 13C-NMR, 13C-NMR-DEPT-135, and MS).

Conclusion: Ionic liquid is utilized as an inexpensive, efficient one-pot three-component solvent-free synthesis of thiazolidine-4-one derivatives with good to excellent yields.

Most of the synthesized compounds showed high biological and anti-fungal activity, in line with the docking study against mentioned microorganism and crystal structure of PDB (ID: 7VHV), respectively.

Keywords: Ionic liquid, one-pot synthesis, solvent-free, biological activity, molecular docking study, biological evaluation.

« Previous
Graphical Abstract
[1]
Earle, M.J.; Katdare, S.P.; Seddon, K.R.J.O.L. Paradigm confirmed: The first use of ionic liquids to dramatically influence the outcome of chemical reactions. Org. Lett., 2004, 6(5), 707-710.
[http://dx.doi.org/10.1021/ol036310e]
[2]
Ranu, B.C.; Banerjee, S.J.T.J.O.C. Ionic liquid as reagent. A green procedure for the regioselective conversion of epoxides to V original-Halohydrins Using (AcMIm) X under Catalyst-and Solvent-Free Conditions. J. Org. Chem., 2005, 70(11), 4517-4519.
[3]
Hardacre, C.; Parvulescu, V. Catalysis in ionic liquids: from catalyst synthesis to application; RSC Publishing, 2014.
[http://dx.doi.org/10.1039/9781849737210]
[4]
Holbrey, J.; Seddon, K. J. A. C. Int. Ed, Clean Prod. Process 1999, 1, 223(c) Wasserscheid, P.; Keim, W. 2000, 39, 3772. 2000.
[5]
Huddleston, J.G.; Willauer, H.D.; Swatloski, R.P.; Visser, A.E.; Rogers, R.D.J.C.C. Room temperature ionic liquids as novel media for ‘clean liquid–liquid extraction. Chem. Commun., 1998, (16), 1765-1766.
[6]
Sydnes, O. One-pot reactions: A step towards greener chemistry. Curr. Green Chem., 2014, 1(3), 216-226.
[7]
Roopashree, R.; Ramesh, S.T.; Jagadish, S.; Dhananjaya, M.C.; Subbegowda, R.K.J.L.D.D. Discovery, synthesis, and cholinesterase inhibition activity of new pyrrolopyrimidine derivatives. Lett. Drug Des. Discov., 2014, 11(10), 1143-1148.
[8]
Vintonyak, V.V.; Warburg, K.; Over, B.; Hübel, K.; Rauh, D.; Waldmann, H.J.T. Identification and further development of thiazolidinones spiro-fused to indolin-2-ones as potent and selective inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase B. Tetrahedron, 2011, 67(35), 6713-6729.
[http://dx.doi.org/10.1016/j.tet.2011.04.026]
[9]
Tian, Y.; Zhan, P.; Rai, D.; Zhang, J.; De Clercq, E.; Liu, X.J.C.m.c. Recent advances in the research of 2, 3-diaryl-1, 3-thiazolidin-4-one derivatives as potent HIV-1 non-nucleoside reverse transcriptase inhibitors. Curr. Med. Chem., 2012, 19(13), 2026-2037.
[10]
Gautam, P.; Chaudhary, R.P. Carbodiimide mediated synthesis of new thiazolidin-4-ones and thiazinan-4-ones from thiosemicarbazone derivatives of 6,7-Dihydro-1 H -Indazole-4(5 H)-. Ones. J. Chem. Res., 2014, 38(4), 226-230.
[http://dx.doi.org/10.3184/174751914X13940194215183]
[11]
Kunzler, A.; Neuenfeldt, P.D. das Neves, A.M.; Pereira, C.M.; Marques, G.H.; Nascente, P.S.; Fernandes, M.H.; Huebner, S.O.; Cunico, W.J.E.j.o.m.c. Synthesis, antifungal and cytotoxic activities of 2-aryl-3-((piperidin-1-yl) ethyl) thiazolidinones. Eur. J. Med. Chem., 2013, 64, 74-80.
[12]
Diurno, M.V.; Mazzoni, O.; Piscopo, E.; Calignano, A.; Giordano, F.; Bolognese, A.J.J.o. m.c. Synthesis and antihistaminic activity of some thiazolidin-4-ones. J. Med. Chem., 1992, 35(15), 2910-2912.
[http://dx.doi.org/10.1021/jm00093a025]
[13]
Gouvea, D.P.; Vasconcellos, F.A.; dos Anjos, B.G.; Neto, A.C.P.S.; Fischer, G.; Sakata, R.P.; Almeida, W.P.; Cunico, W.J.E.j.o.m.c. 2-Aryl-3-(2-morpholino ethyl) thiazolidine-4-ones: synthesis, anti-inflammatory in vivo, cytotoxicity in vitro, and molecular docking studies. Eur. J. Med. Chem., 2016, 118, 259-265.
[14]
Bosenbecker, J.; Bareño, V.D.; Difabio, R.; Vasconcellos, F.A.; Dutra, F.S.; Oliveira, P.S.; Barschak, A.G.; Stefanello, F.M.; Cunico, W.J.J.o.B.; Toxicology, M. Synthesis and antioxidant activity of 3􀇦 (pyridin􀇦2􀇦ylmethyl)􀇦1, 3􀇦thiazinan (thiazolidin)􀇦4􀇦ones. J. Biochem. Mol. Toxicol., 2014, 28(9), 425-432.
[15]
Qiao, Z.; Wang, W.; Wang, L.; Wen, D.; Zhao, Y.; Wang, Q.; Meng, Q.; Chen, G.; Wu, Y.; Zhou, H.J.B. Design, synthesis, and biological evaluation of benzodiazepine-based SUMO-specific protease 1 inhibitor. Bioorg. Med. Chem. Lett., 2011, 21(21), 6389-6392.
[16]
Safaei-Ghomi, J.; Navvab, M.; Shahbazi-Alavi, H.J.U.S. One-pot sonochemical synthesis of 1, 3-thiazolidine-4-ones using nano-CdZr4 (PO4) 6 as a robust heterogeneous catalyst. Ultrason. Sonochem., 2016, 31, 102-106.
[17]
Abdel-Rahman, R.M.; Ali, T.E.J.M.f.C.C.M. Synthesis and biological evaluation of some new polyfluorinated 4-thiazolidinedione aα-amino phosphonic nic acid derivatives. Chem. Pharm. Bull., 2013, 144(8), 1243-1252.
[18]
Kumar, D.; Sonawane, M.; Pujala, B.; Jain, V.K.; Bhagat, S.; Chakraborti, A.K.J.G.c. Supported protic acid-catalyzed synthesis of 2, 3-disubstituted thiazolidine-4-ones: enhancement of the catalytic potential of protic acid by adsorption on solid supports. Green Chem., 2013, 15(10), 2872-2884.
[19]
Srivastava, T.; Haq, W.; Katti, S. J. T. Carbodiimide mediated synthesis of 4-thiazolidinediones by one-pot three-component condensation. 2002, 58(38), 7619-7624.
[20]
Safaei-Ghomi, J.; Nazemzadeh, S. H.; Shahbazi-Alavi, H. J. Z. f. N. B. Nano-colloidal silica-tethered polyhedral oligomeric silsesquioxanes with eight branches of 3-aminopropyltriethoxysilane as a highperformance catalyst for the preparation of bis-thiazolidinediones under ultrasonic conditions. 2017, 72(12), 927-935.
[21]
Mobinikhaledi, A.; Khajeh Amiri, A.J.L.O.C. Green and highly efficient one-pot synthesis of some new bis thiazolidinones. Lett. Org. Chem., 2013, 10(10), 764-769.
[http://dx.doi.org/10.2174/157017861131000059]
[22]
Foroughifar, N.; Ebrahimi, S.J.C.C.L. One-pot synthesis of 1, 3-thiazolidine-4-one using Bi (SCH2COOH) 3 as a catalyst. Chin. Chem. Lett., 2013, 24(5), 389-391.
[23]
Azgomi, N.; Mokhtary, M.J.J.o.M.C.A.C. Nano-Fe3O4@ SiO2 supported ionic liquid as an efficient catalyst for the synthesis of 1, 3-thiazolidine-4-ones under solvent-free conditions. J. Mol. Catal. A Chem., 2015, 398, 58-64.
[24]
Meshram, J.; Ali, P.; Tiwari, V.J.G.C.L. Reviews, Zeolite as an efficient and recyclable activation surface for the synthesis of bisthiazolidinediones: Theoretical screening owing to experimental biology. 2010, 3(3), 195-200.
[25]
Jameson, R.J.J.o.t.C.S. The composition of the “strong” phosphoric acids. Can. J. Chem., 1959, 151, 752-759.
[26]
Wang, C.; Guo, L.; Li, H.; Wang, Y.; Weng, J.; Wu, L.J.G.c. Preparation of simple ammonium ionic liquids and their application in the cracking of dialkoxypropanes. Green Chem., 2006, 8(7), 603-607.
[http://dx.doi.org/10.1039/b600041j]
[27]
Zahari, S.S.N.S.; Amin, A.T.M.; Halim, N.M.; Rosli, F.A.; Halim, W.I.T.A.; Samsukamal, N.A.; Sasithran, B.; Ariffin, N.A.Z.; Azman, H.H.; Hassan, N.H. Deconstruction of Malaysian agro-wastes with inexpensive and bifunctional triethylammonium hydrogen sulfate ionic liquid, AIP Conference Proceedings, 2018; p. 030024.
[http://dx.doi.org/10.1063/1.5041245]
[28]
Martins, M.A.; Frizzo, C.P.; Moreira, D.N.; Zanatta, N.; Bonacorso, H.G.J.C.r. Ionic liquids in heterocyclic synthesis. Chem. Rev., 2008, 108(6), 2015-2050.
[http://dx.doi.org/10.1021/cr078399y]
[29]
Yousaf, M.; Zahoor, A.F.; Faiz, S.; Javed, S.; Irfan, M.J.J.o.H.C. Recent synthetic approaches towards biologically potent derivatives/analogs of theophylline. J. Chem. Heterocycl., 2018, 55(11), 2447-2479.
[30]
Gottlieb, H.E.; Kotlyar, V.; Nudelman, A.J.J.o.o.c. NMR chemical shifts of common laboratory solvents as trace impurities. J. Org. Chem., 1997, 62(21), 7512-7515.
[http://dx.doi.org/10.1021/jo971176v]
[31]
Rao, P.P.; Amini, M.; Li, H.; Habeeb, A.G.; Knaus, E.E.J.B.; Letters, M.C. 6-Alkyl, alkoxy, or alkylthio-substituted 3-(4-methane sulfonyl phenyl)-4-phenyl pyran-2-ones: A novel class of diaryl heterocyclic selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. Lett., 2003, 13(13), 2205-2209.
[32]
Ernst, M. Poręba, T.; Gnägi, L.; Gryn’ova, G. Locating guest molecules inside metal-organic framework pores with a multiscale computational approach. J. Phys. Chem. C, 2022, 127(1)
[http://dx.doi.org/10.26434/chemrxiv-2022-93pst]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy