Skip to main content

Advertisement

Log in

Potential functions and therapeutic implications of glioma-resident mesenchymal stem cells

  • Review
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are emerging crucial regulators in the tumor microenvironment (TME), which contributes to tumor progression and therapeutic resistance. MSCs are considered to be the stromal components of several tumors, their ultimate contribution to tumorigenesis and their potential to drive tumor stem cells, especially in the unique microenvironment of gliomas. Glioma-resident MSCs (GR-MSCs) are non-tumorigenic stromal cells. The phenotype of GR-MSCs is similar to that of prototype bone marrow-MSCs and GR-MSCs enhance the GSCs tumorigenicity via the IL-6/gp130/STAT3 pathway. The higher percentage of GR-MSCs in TME results in the poor prognosis of glioma patients and illuminate the tumor-promoting roles for GR-MSCs by secreting specific miRNA. Furthermore, the GR-MSC subpopulations associated with CD90 expression determine their different functions in glioma progression and CD90low MSCs generate therapeutic resistance by increasing IL-6-mediated FOXS1 expression. Therefore, it is urgent to develop novel therapeutic strategies targeting GR-MSCs for GBM patients. Despite that several functions of GR-MSCs have been confirmed, their immunologic landscapes and deeper mechanisms associated with the functions are not still expounded. In this review, we summarize the progress and potential function of GR-MSCs, as well as highlight their therapeutic implications based on GR-MSCs in GBM patients.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MSCs:

Mesenchymal stem cells

GR-MSCs:

Gioma-resident mesenchymal stem cells

GA-MSCs:

Gioma-associated mesenchymal stem cells

TA-MSCs:

Tumor-associated mesenchymal stem cells

TME:

Tumor microenvironment

GBM:

Glioblastoma

GSCs:

Glioma stem cells

IDO:

Indoleamine 2,3-dioxygenase

PGE2:

Prostaglandin E2

Tregs:

Regulatory B cells

PD-1:

Programmed death protein 1

PD-L1:

Programmed death ligand 1

NK:

Natural killer

DCs:

Dendritic cells

EMT:

Epithelial-mesenchymal transition

References

  • Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105:1815–22.

    Article  CAS  PubMed  Google Scholar 

  • Ahn SY, Chang YS, Sung SI, Park WS. Mesenchymal stem cells for severe intraventricular hemorrhage in preterm infants: phase I dose-escalation clinical trial. Stem Cells Transl Med. 2018;7:847–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alessandrini F, Menotti L, Avitabile E, Appolloni I, Ceresa D, Marubbi D, et al. Eradication of glioblastoma by immuno-virotherapy with a retargeted oncolytic HSV in a preclinical model. Oncogene. 2019;38:4467–79.

    Article  CAS  PubMed  Google Scholar 

  • Asari S, Itakura S, Ferreri K, Liu CP, Kuroda Y, Kandeel F, et al. Mesenchymal stem cells suppress B-cell terminal differentiation. Exp Hematol. 2009;37:604–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajetto A, Thellung S, Dellacasagrande I, Pagano A, Barbieri F, Florio T. Cross talk between mesenchymal and glioblastoma stem cells: communication beyond controversies. Stem Cells Transl Med. 2020;9:1310–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ballman KV, Buckner JC, Brown PD, Giannini C, Flynn PJ, LaPlant BR, et al. The relationship between six-month progression-free survival and 12-month overall survival end points for phase II trials in patients with glioblastoma multiforme. Neuro Oncol. 2007;9:29–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behnan J, Isakson P, Joel M, Cilio C, Langmoen IA, Vik-Mo EO, et al. Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression. Stem Cells. 2014;32:1110–23.

    Article  CAS  PubMed  Google Scholar 

  • Bischoff DS, Zhu JH, Makhijani NS, Kumar A, Yamaguchi DT. Angiogenic CXC chemokine expression during differentiation of human mesenchymal stem cells towards the osteoblastic lineage. J Cell Biochem. 2008;103:812–24.

    Article  CAS  PubMed  Google Scholar 

  • Chastkofsky MI, Pituch KC, Katagi H, Zannikou M, Ilut L, Xiao T, et al. Mesenchymal stem cells successfully deliver oncolytic virotherapy to diffuse intrinsic pontine glioma. Clin Cancer Res : an Official J Am Assoc Cancer Res. 2021;27:1766–77.

    Article  CAS  Google Scholar 

  • Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018a;560:382–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Liu G, Liu S, Su H, Wang Y, Li J, et al. Remodeling the tumor microenvironment with emerging nanotherapeutics. Trends Pharmacol Sci. 2018b;39:59–74.

    Article  PubMed  Google Scholar 

  • Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK, et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell. 2013;153:139–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi SA, Lee JY, Wang KC, Phi JH, Song SH, Song J, et al. Human adipose tissue-derived mesenchymal stem cells: characteristics and therapeutic potential as cellular vehicles for prodrug gene therapy against brainstem gliomas. Eur J Cancer. 2012;48:129–37.

    Article  CAS  PubMed  Google Scholar 

  • Clavreul A, Menei P. Mesenchymal stromal-like cells in the glioma microenvironment: what are these cells? Cancers. 2020;12:2628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies LC, Heldring N, Kadri N, Le Blanc K. Mesenchymal stromal cell secretion of programmed death-1 ligands regulates T cell mediated immunosuppression. Stem Cells. 2017;35:766–76.

    Article  CAS  PubMed  Google Scholar 

  • De Boeck A, Pauwels P, Hensen K, Rummens J-L, Westbroek W, Hendrix A, et al. Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression through paracrine neuregulin 1/HER3 signalling. Gut. 2013;62:550–60.

    Article  PubMed  Google Scholar 

  • de Souza LEB, Ferreira FU, Thome CH, Brand H, Orellana MD, Faca VM, et al. Human and mouse melanoma cells recapitulate an EMT-like program in response to mesenchymal stromal cells secretome. Cancer Lett. 2021;501:114–23.

    Article  PubMed  Google Scholar 

  • Devine SM, Bartholomew AM, Mahmud N, Nelson M, Patil S, Hardy W, et al. Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol. 2001;29:244–55.

    Article  CAS  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  • Dunn GP, Cloughesy TF, Maus MV, Prins RM, Reardon DA, Sonabend AM. Emerging immunotherapies for malignant glioma: from immunogenomics to cell therapy. Neuro Oncol. 2020;22:1425–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Haibi CP, Bell GW, Zhang J, Collmann AY, Wood D, Scherber CM, et al. Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy. Proc Natl Acad Sci U S A. 2012;109:17460–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei S, Qi X, Kedong S, Guangchun J, Jian L, Wei Q. The antitumor effect of mesenchymal stem cells transduced with a lentiviral vector expressing cytosine deaminase in a rat glioma model. J Cancer Res Clin Oncol. 2012;138:347–57.

    Article  PubMed  Google Scholar 

  • Figueroa J, Phillips LM, Shahar T, Hossain A, Gumin J, Kim H, et al. Exosomes from glioma-associated mesenchymal stem cells increase the tumorigenicity of glioma stem-like cells via transfer of miR-1587. Cancer Res. 2017;77:5808–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francois M, Romieu-Mourez R, Li M, Galipeau J. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther. 2012;20:187–95.

    Article  CAS  PubMed  Google Scholar 

  • Friedenstein AJ, Piatetzky S II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966;16:381–90.

    CAS  PubMed  Google Scholar 

  • Gazdic M, Volarevic V, Arsenijevic N, Stojkovic M. Mesenchymal stem cells: a friend or foe in immune-mediated diseases. Stem Cell Rev Rep. 2015;11:280–7.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370:699–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan F, Huang T, Wang X, Xing Q, Gumpper K, Li P, et al. The TRIM protein Mitsugumin 53 enhances survival and therapeutic efficacy of stem cells in murine traumatic brain injury. Stem Cell Res Ther. 2019;10:352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunn WG, Conley A, Deininger L, Olson SD, Prockop DJ, Gregory CA. A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and interleukin-6: a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells. 2006;24:986–91.

    Article  CAS  PubMed  Google Scholar 

  • Han X, Xu Y, Geranpayehvaghei M, Anderson GJ, Li Y, Nie G. Emerging nanomedicines for anti-stromal therapy against desmoplastic tumors. Biomaterials. 2020;232:119745.

    Article  CAS  PubMed  Google Scholar 

  • Hasani-Sadrabadi MM, Sarrion P, Pouraghaei S, Chau Y, Ansari S, Li S, et al. An engineered cell-laden adhesive hydrogel promotes craniofacial bone tissue regeneration in rats. Sci Transl Med. 2020;12

  • Hassanzadeh A, Altajer AH, Rahman HS, Saleh MM, Bokov DO, Abdelbasset WK, et al. Mesenchymal stem/stromal cell-based delivery: a rapidly evolving strategy for cancer therapy. Front Cell Dev Biol. 2021;9:686453.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain A, Gumin J, Gao F, Figueroa J, Shinojima N, Takezaki T, et al. Mesenchymal stem cells isolated from human gliomas increase proliferation and maintain stemness of glioma stem cells through the IL-6/gp130/STAT3 pathway. Stem Cells. 2015;33:2400–15.

    Article  CAS  PubMed  Google Scholar 

  • Iaquinta MR, Lanzillotti C, Mazziotta C, Bononi I, Frontini F, Mazzoni E, et al. The role of microRNAs in the osteogenic and chondrogenic differentiation of mesenchymal stem cells and bone pathologies. Theranostics. 2021;11:6573–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iser IC, Ceschini SM, Onzi GR, Bertoni AP, Lenz G, Wink MR. Conditioned medium from adipose-derived stem cells (ADSCs) promotes epithelial-to-mesenchymal-like transition (EMT-Like) in glioma cells in vitro. Mol Neurobiol. 2016;53:7184–99.

    Article  CAS  PubMed  Google Scholar 

  • Jahan N, Talat H, Curry WT. Agonist OX40 immunotherapy improves survival in glioma-bearing mice and is complementary with vaccination with irradiated GM-CSF-expressing tumor cells. Neuro Oncol. 2018;20:44–54.

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, Ding X, Zhou L, Zhang L, Yang X. Mesenchymal stem cells-derived exosomal microRNA-139-5p restrains tumorigenesis in bladder cancer by targeting PRC1. Oncogene. 2021;40:246–61.

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer. 2019;18:10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin M-Z, Jin W-L. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduction and Targeted. Therapy. 2020;5

  • Jing Y, Liang W, Zhang L, Tang J, Huang Z. The role of mesenchymal stem cells in the induction of cancer-stem cell phenotype. Front Oncol. 2022;12:817971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SA, Fack F, et al. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci U S A. 2011;108:3749–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim CY, Paek SH, Nam DH, Chang JH, Hong YK, Kim JH, et al. Tumor treating fields plus temozolomide for newly diagnosed glioblastoma: a sub-group analysis of Korean patients in the EF-14 phase 3 trial. J Neurooncol. 2020;146:399–406.

    Article  CAS  PubMed  Google Scholar 

  • Kucerova L, Matuskova M, Hlubinova K, Altanerova V, Altaner C. Tumor cell behaviour modulation by mesenchymal stromal cells. Mol Cancer. 2010;9:129.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lang FM, Hossain A, Gumin J, Momin EN, Shimizu Y, Ledbetter D, et al. Mesenchymal stem cells as natural biofactories for exosomes carrying miR-124a in the treatment of gliomas. Neuro Oncol. 2018;20:380–90.

    Article  CAS  PubMed  Google Scholar 

  • Li N, Hua J. Interactions between mesenchymal stem cells and the immune system. Cell Mol Life Sci. 2017;74:2345–60.

    Article  CAS  PubMed  Google Scholar 

  • Li P, Gong Z, Shultz LD, Ren G. Mesenchymal stem cells: from regeneration to cancer. Pharmacol Ther. 2019;200:42–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Chen M, Lu W, Tang J, Deng L, Wen Q, et al. Targeting FAPalpha-expressing tumor-associated mesenchymal stromal cells inhibits triple-negative breast cancer pulmonary metastasis. Cancer Lett. 2021;503:32–42.

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Cai J, Jiang C. Recent advances in targeted therapy for glioma. Curr Med Chem. 2017;24:1365–81.

    Article  CAS  PubMed  Google Scholar 

  • Ling W, Zhang J, Yuan Z, Ren G, Zhang L, Chen X, et al. Mesenchymal stem cells use IDO to regulate immunity in tumor microenvironment. Cancer Research. 2014;74:1576–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lis R, Touboul C, Mirshahi P, Ali F, Mathew S, Nolan DJ, et al. Tumor associated mesenchymal stem cells protects ovarian cancer cells from hyperthermia through CXCL12. Int J Cancer. 2011;128:715–25.

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Li G, Li R, Shen J, He Q, Deng L, et al. IL-6 promotion of glioblastoma cell invasion and angiogenesis in U251 and T98G cell lines. J Neurooncol. 2010;100:165–76.

    Article  CAS  PubMed  Google Scholar 

  • Liu XH, Kirschenbaum A, Yao S, Levine AC. Interactive effect of interleukin-6 and prostaglandin E2 on osteoclastogenesis via the OPG/RANKL/RANK system. Ann N Y Acad Sci. 2006;1068:225–33.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Li Z, Zhang M, Zhou H, Wu X, Zhong J, et al. Rolling-translated EGFR variants sustain EGFR signaling and promote glioblastoma tumorigenicity. Neuro Oncol. 2021a;23:743–56.

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Mi F, Han M, Tian M, Deng L, Meng N, et al. Bone marrow-derived mesenchymal stem cells inhibit CD8(+) T cell immune responses via PD-1/PD-L1 pathway in multiple myeloma. Clin Exp Immunol. 2021b;205:53–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luz-Crawford P, Kurte M, Bravo-Alegria J, Contreras R, Nova-Lamperti E, Tejedor G, et al. Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Res Ther. 2013;4:65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maestroni GJ, Hertens E, Galli P. Factor(s) from nonmacrophage bone marrow stromal cells inhibit Lewis lung carcinoma and B16 melanoma growth in mice. Cell Mol Life Sci. 1999;55:663–7.

    Article  CAS  PubMed  Google Scholar 

  • Matteoni S, Abbruzzese C, Villani V, Malorni W, Pace A, Matarrese P, et al. The influence of patient sex on clinical approaches to malignant glioma. Cancer Lett. 2020;468:41–7.

    Article  PubMed  Google Scholar 

  • McLean K, Gong Y, Choi Y, Deng N, Yang K, Bai S, et al. Human ovarian carcinoma–associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production. J Clin Investig. 2011;121:3206–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mun EJ, Babiker HM, Weinberg U, Kirson ED, Von Hoff DD. Tumor-treating fields: a fourth modality in cancer treatment. Clin Cancer Res : an Official J Am Assoc Cancer Res. 2018;24:266–75.

    Article  CAS  Google Scholar 

  • Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci. 2019;76:3323–48.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H, et al. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther. 2004;11:1155–64.

    Article  CAS  PubMed  Google Scholar 

  • Pagella P, Miran S, Neto E, Martin I, Lamghari M, Mitsiadis TA. Human dental pulp stem cells exhibit enhanced properties in comparison to human bone marrow stem cells on neurites outgrowth. FASEB J. 2020;34:5499–511.

    Article  CAS  PubMed  Google Scholar 

  • Park MJ, Kwok SK, Lee SH, Kim EK, Park SH, Cho ML. Adipose tissue-derived mesenchymal stem cells induce expansion of interleukin-10-producing regulatory B cells and ameliorate autoimmunity in a murine model of systemic lupus erythematosus. Cell Transplant. 2015;24:2367–77.

    Article  PubMed  Google Scholar 

  • Pillat MM, Oliveira-Giacomelli A, das Neves Oliveira M, Andrejew R, Turrini N, Baranova J, et al. Mesenchymal stem cell-glioblastoma interactions mediated via kinin receptors unveiled by cytometry. Cytometry A. 2021;99:152–63.

    Article  CAS  PubMed  Google Scholar 

  • Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011;19:257–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabelink TJ, Little MH. Stromal cells in tissue homeostasis: balancing regeneration and fibrosis. Nat Rev Nephrol. 2013;9:747–53.

    Article  CAS  PubMed  Google Scholar 

  • Ramasamy R, Lam EW, Soeiro I, Tisato V, Bonnet D, Dazzi F. Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia. 2007;21:304–10.

    Article  CAS  PubMed  Google Scholar 

  • Ren G, Su J, Zhang L, Zhao X, Ling W, L'Huillie A, et al. Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells. 2009;27:1954–62.

    Article  CAS  PubMed  Google Scholar 

  • Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2008;2:141–50.

    Article  CAS  PubMed  Google Scholar 

  • Ren G, Zhao X, Wang Y, Zhang X, Chen X, Xu C, et al. CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNFalpha. Cell Stem Cell. 2012;11:812–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridge SM, Sullivan FJ, Glynn SA. Mesenchymal stem cells: key players in cancer progression. Mol Cancer. 2017;16:31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryu CH, Park SH, Park SA, Kim SM, Lim JY, Jeong CH, et al. Gene therapy of intracranial glioma using interleukin 12-secreting human umbilical cord blood-derived mesenchymal stem cells. Hum Gene Ther. 2011;22:733–43.

    Article  CAS  PubMed  Google Scholar 

  • Saad A, Dietz AB, Herrmann SMS, Hickson LJ, Glockner JF, McKusick MA, et al. Autologous mesenchymal stem cells increase cortical perfusion in renovascular disease. J Am Soc Nephrol. 2017;28:2777–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandona M, Di Pietro L, Esposito F, Ventura A, Silini AR, Parolini O, et al. Mesenchymal stromal cells and their secretome: new therapeutic perspectives for skeletal muscle regeneration. Front Bioeng Biotechnol. 2021;9:652970.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scherzed A, Hackenberg S, Froelich K, Kessler M, Koehler C, Hagen R, et al. BMSC enhance the survival of paclitaxel treated squamous cell carcinoma cells in vitro. Cancer Biol Ther. 2011;11:349–57.

    Article  CAS  PubMed  Google Scholar 

  • Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells. 2008;26:212–22.

    Article  CAS  PubMed  Google Scholar 

  • Sethi N, Dai X, Winter CG, Kang Y. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell. 2011;19:192–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahar T, Rozovski U, Hess KR, Hossain A, Gumin J, Gao F, et al. Percentage of mesenchymal stem cells in high-grade glioma tumor samples correlates with patient survival. Neuro Oncol. 2017;19:660–8.

    CAS  PubMed  Google Scholar 

  • Shi Y, Du L, Lin L, Wang Y. Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nat Rev Drug Discov. 2017;16:35–52.

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Su J, Roberts AI, Shou P, Rabson AB, Ren G. How mesenchymal stem cells interact with tissue immune responses. Trends Immunol. 2012;33:136–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Wang Y, Li Q, Liu K, Hou J, Shao C, et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol. 2018;14:493–507.

    Article  CAS  PubMed  Google Scholar 

  • Song N, Scholtemeijer M, Shah K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Trends Pharmacol Sci. 2020;41:653–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006;24:74–85.

    Article  PubMed  Google Scholar 

  • Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PloS One. 2009;4:e4992.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood. 2008;111:1327–33.

    Article  CAS  PubMed  Google Scholar 

  • Strauch V, Saul D, Berisha M, Mackensen A, Mougiakakos D, Jitschin R. N-glycosylation controls inflammatory licensing-triggered PD-L1 upregulation in human mesenchymal stromal cells. Stem Cells. 2020;38:986–93.

    Article  CAS  PubMed  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.

    Article  CAS  PubMed  Google Scholar 

  • Svensson A, Ramos-Moreno T, Eberstal S, Scheding S, Bengzon J. Identification of two distinct mesenchymal stromal cell populations in human malignant glioma. J Neurooncol. 2017;131:245–54.

    Article  CAS  PubMed  Google Scholar 

  • Tan SSH, Tjio CKE, Wong JRY, Wong KL, Chew JRJ, Hui JHP, et al. Mesenchymal stem cell exosomes for cartilage regeneration: a systematic review of preclinical in vivo studies. Tissue Eng Part B Rev. 2021;27:1–13.

    Article  CAS  PubMed  Google Scholar 

  • Timaner M, Letko-Khait N, Kotsofruk R, Benguigui M, Beyar-Katz O, Rachman-Tzemah C, et al. Therapy-educated mesenchymal stem cells enrich for tumor-initiating cells. Cancer Res. 2018;78:1253–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis Mortari A, McElmurry RT, Bell S, et al. Sarcoma derived from cultured mesenchymal stem cells. Stem Cells. 2007;25:371–9.

    Article  CAS  PubMed  Google Scholar 

  • Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8:726–36.

    Article  CAS  PubMed  Google Scholar 

  • Valkenburg KC, de Groot AE, Pienta KJ. Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol. 2018;15:366–81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang D, Prager BC, Gimple RC, Aguilar B, Alizadeh D, Tang H, et al. CRISPR screening of CAR T cells and cancer stem cells reveals critical dependencies for cell-based therapies. Cancer Discov. 2021;11:1192–211.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen X, Cao W, Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol. 2014;15:1009–16.

    Article  CAS  PubMed  Google Scholar 

  • Whiteside TL. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol. 2018;35:69–79.

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Letters. 2017;387:61–8.

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Shaw G, Murphy M, Barry F. Induced pluripotent stem cell-derived mesenchymal stromal cells are functionally and genetically different from bone marrow-derived mesenchymal stromal cells. Stem Cells. 2019;37:754–65.

    Article  CAS  PubMed  Google Scholar 

  • Xue B-Z, Xiang W, Zhang Q, Wang H-F, Zhou Y-J, Tian H, et al. CD90low glioma-associated mesenchymal stromal/stem cells promote temozolomide resistance by activating FOXS1-mediated epithelial-mesenchymal transition in glioma cells. Stem Cell Res Ther. 2021;12

  • Xue S, Hu M, Iyer V, Yu J. Blocking the PD-1/PD-L1 pathway in glioma: a potential new treatment strategy. J Hematol Oncol. 2017;10:81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi M, Niu M, Xu L, Luo S, Wu K. Regulation of PD-L1 expression in the tumor microenvironment. J Hematol Oncol. 2021;14:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Liu R, Shi D, Liu X, Chen Y, Dou X, et al. Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2-dependent regulatory dendritic cell population. Blood. 2009;113:46–57.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Chen H, Chen C, Liu H, He Y, Zhao J, et al. Systemic administration of mesenchymal stem cells loaded with a novel oncolytic adenovirus carrying IL-24/endostatin enhances glioma therapy. Cancer Lett. 2021a;509:26–38.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Liu F. Advances and potential pitfalls of oncolytic viruses expressing immunomodulatory transgene therapy for malignant gliomas. Cell Death Dis. 2020;11:485.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Xiang W, Xue BZ, Yi DY, Zhao HY, Fu P. Growth factors contribute to the mediation of angiogenic capacity of glioma-associated mesenchymal stem cells. Oncol Lett. 2021b;21:215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Xiang W, Yi DY, Xue BZ, Wen WW, Abdelmaksoud A, et al. Current status and potential challenges of mesenchymal stem cell-based therapy for malignant gliomas. Stem Cell Res Ther. 2018a;9:228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Yi DY, Xue BZ, Wen WW, Lu YP, Abdelmaksou A, et al. CD90 determined two subpopulations of glioma-associated mesenchymal stem cells with different roles in tumour progression. Cell Death Dis. 2018b;9:1101.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Zhang J, Tian Y, Zhu G, Liu S, Liu F. Efficacy of a novel double-controlled oncolytic adenovirus driven by the Ki67 core promoter and armed with IL-15 against glioblastoma cells. Cell Bioscience. 2020;10

  • Zhang X, Hu F, Li G, Li G, Yang X, Liu L, et al. Human colorectal cancer-derived mesenchymal stem cells promote colorectal cancer progression through IL-6/JAK2/STAT3 signaling. Cell Death Dis. 2018c;9:25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Chen C, Shi Y, Wu Q, Gimple RC, Fang X, et al. Targeting glioma stem cell-derived pericytes disrupts the blood-tumor barrier and improves chemotherapeutic efficacy. Cell Stem Cell. 2017;21(591-603):e594.

    Google Scholar 

Download references

Acknowledgements

Fig. 1, Fig. 2, Fig. 4 and graphical abstract used in this article were created using BioRender.com. Fig. 3 was created using ScienceSlides.

Funding

This work was supported by grants from the Beijing Natural Science Foundation Program and Scientific Research Key Program of the Beijing Municipal Commission of Education (KZ202010025034), the Capital’s Funds for Health Improvement and Research (CFH, 2020-1-1071), the National Natural Science Foundation of China (No, 81972344) and the Beijing Laboratory of Biomedical Materials Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Q.Z. wrote the manuscript text and prepared Figs. 1, 2, 4 and Table 1. J.L.W. wrote the manuscript text and prepared Fig 3. J.W.Z. collected the partial literature. F.S.L. provided the funding and revised the manuscript. All authors approved the version.

Corresponding author

Correspondence to Fusheng Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wang, J., Zhang, J. et al. Potential functions and therapeutic implications of glioma-resident mesenchymal stem cells. Cell Biol Toxicol 39, 853–866 (2023). https://doi.org/10.1007/s10565-023-09808-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-023-09808-7

Keywords

Navigation