Skip to main content
Log in

Permian Terrigenous Deposits of the Omolon Massif: Formation Settings and Source Area (According to Geochemical Data)

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

This article presents the results of major, trace, and rare-earth element study of the Permian terrigenous rocks of the southern part of the Omolon Massif. The lithochemical studies showed that sediments were accumulated in a warm climate with episodes of some cooling. The Omolon Basin had a normal salinity, with alternating oxic–anoxic environments. The interpretation of the obtained data indicates that the deposits accumulated in the basin are associated with the marginal continental island arc (Okhotsk–Taigonos volcanic arc). Probable sources were basic and intermediate arc volcanics, as well as acid igneous rocks (volcanics of the Kedon Group) and metamorphic complexes of the basement of the Omolon Massif.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Yu. A. Balashov, Geochemistry of Rare-Earth Elements (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  2. I. V. Bryn’ko, G. O. Polzunenkov, and A. S. Biakov, “New U-Pb (SHRIMP-II) data on zircon from Middle Permian deposits of the Omolon massif, Northeast Russia,” Late Paleozoic Sedimentary Planetary Systems: Stratigraphy, Geochronology, and Hydrocarbon Resources. Golovkinsky Proc. Intern. Stratigraph. Conf., Russia, Kazan, 2019 (Kazan. Univ., Kazan, 2019), pp. 68–69 [in Russian].

  3. I. V. Brynko, G. O. Polzunenkov, A. S. Biakov and I. L. Vedernikov, “The first U-Pb SHRIMP dating of zircons from Capitanian (Middle Permian) deposits of the Omolon Massif (Northeast Russia),” Russ. J. Pac. Geol. 15 (1), 51–59 (2021).

  4. A. S. Biakov, A. V. Prokop’ev, R. V. Kutygin, I. L. Vedernikov, and I. V. Budnikov, “Geodynamic formation environments of Permian sedimentary basins in Verkhoyansk-Kolyma folded area,” Otechestven. Geol. 5, 81–85 (2005) [in Russian].

  5. A. S. Biakov, Zonal Stratigraphy, Event Correlation, and Paleobiogeography of the Permian of Northeast Asia Based on Bivalves (SVKNII DVO RAN, Magadan, (2010) [in Russian with English summary].

  6. A. S. Biakov, “Marine bivalves as indicators of climatic changes in the Permian of Northeast Asia,” Uchen. Zap. Kazan. Univ., Ser. Estestven. Nauki 162 (2), 205–217 (2020).

  7. N. A. Goryachev, V. N. Egorov, N. E. Savva, V. M. Kuznetsov, M. I. Fomina, and P. Yu. Rozhkov, Geology and Metallogeny of Phanerozoic Complexes of the Southern Omolon Massif (Dal’nauka, Vladivostok, 2017) [in Russian].

    Google Scholar 

  8. D. S. Kashik, V. G. Ganelin, N. I. Karavaeva, A. S. Biakov, O. A. Miklukho-Maklai, G. A. Stukalina, N. V. Lozhkina, L. A. Dorofeeva, Yu. K. Burkov, E. I. Guteneva, and L. N. Smirnova, Permian Key Section of the Omolon Massif (Nauka, Leningrad, 1990) [in Russian].

    Google Scholar 

  9. Quantitative Chemical Analysis. Inductively-Coupled Plasma Mass Spectrometric Measurements of Metal Contents in Solid Objects (GUAK, Moscow, 1998).

  10. A. V. Maslov, Sedimentary Rocks: Methods of Study and Interpretation of Obtained Data. A Textbook (UGGU, Yekaterinburg, 2005) [in Russian].

    Google Scholar 

  11. Method of Quantitative Chemical Analysis. Express Chemical Methods of Determination of Rock-Forming Elements in Rocks and Ores (VIMS, 2005) [in Russian].

  12. F. J. Pettijohn, P. E. Potter, and R. Siever, Sand and Sandstone (Springer, 1976).

    Google Scholar 

  13. F. J. Pettijohn, Sedimentary Rocks (Harpers, New York, 1957).

    Google Scholar 

  14. V. N. Podkovyrov, L. N. Kotova, E. Yu. Golubkova, and A. V. Ivanovskaya, Lithogeochemistry of Vendian fine-grained clastic rocks in the Nepa–Zhuya region of the Siberian Platform,” Lithol. Miner. Resour. 50 (4), 299–310 (2015).

  15. Resolution of 3 rd Interdisciplinary Regional Stratigraphic Conference on Precambrian, Paleozoic, and Mesozoic of Northeast Russia, Ed. by T. N. Koren’ and G. V. Kotlyar (St. Petersburg, 2002) (VSEGEI, St. Petersburg, 2009) [in Russian].

  16. E. V. Sklyarov, D. P. Gladkochub, T. V. Donskaya, A. V. Ivanov, E. F. Letnikova, A. G. Mironov, I. G. Barash, V. A. Bulanov, and A. I. Sizykh, Interpretation of Geochemical Data. A Textbook, Ed. by E.V. Sklyarov (Intermet Inzhirning, Moscow, 2001) [in Russian].

    Google Scholar 

  17. S. R. Taylor and S. M. McLennan, The Continental Crust: its Composition and Evolution (Blackwell, Oxford, 1988).

    Google Scholar 

  18. E. Ya. Yudovich and M. P. Ketris, Principles of Lithochemistry (Nauka, St. Petersburg, 2000) [in Russian].

    Google Scholar 

  19. A. D. Chekhov, Tectonic Evolution of Northeast Russia (Marginal Sea Model) (Nauch. mir, Moscow, 2000) [in Russian].

  20. V. N. Kholodov and R. I. Nedumov, “On geochemical criteria of occurrence of H2S contamination in waters of ancient basins,” Izv. AN SSSR. Ser. Geol., No. 12, 74–82 (1991).

  21. V. A. Shatrov, “Rare earth elements as indicators of formation conditions of cretaceous phosphorites: evidence from the East European Platform,” Dokl. Earth Sci. 414 (4), 567–569 (2007).

  22. M. R. Bhatia, “Plate tectonics and geochemical composition of sandstones,” J. Geol. 91 (6), 611–627 (1983).

  23. M. R. Bhatia and K. A. W. Crook, “Trace element characteristics of graywackes and tectonic settings discrimination of sedimentary basins,” Contrib. Mineral Petrol 92, 181–193 (1986).

  24. A. S. Biakov and G. R. Shi, “Palaeobiogeography and palaeogeographical implications of Permian marine bivalve faunas in Northeast Asia (Kolyma–Omolon and Verkhoyansk–Okhotsk regions, northeastern Russia),” Palaeogeogr., Ralaeoclimatol., Palaeoecol 298, 42–53 (2010).

  25. R. L. Cullers, “Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA,” Chem. Geol. 191, 305–327 (2002).

  26. J. R. Hatch and J. S. Leventhal, “Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark shale member of the Dermis Limestone, Wabaunsee County, Kansas, U.S.A,” Chem. Geol. 99, 65–82 (1992).

  27. D. A. C. Manning, “Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones,” Chem. Geol. 111, 111–129 (1994).

  28. S. M. McLennan, S. Hemming, D. K. McDaniel, and G. N. Hanson, “Geochemical approaches to sedimentation, provenance and tectonics,” Processes Controlling the Composition of Clastic Sediments, Ed. by M. J. Johanson and A. Basu, Geol. Soc. Am. Spec. Pap. 284, 21–40 (1993).

  29. R. W. Murray, T. Buchholtz, M. R. Brink, D. L. Jones, D. C. Gerlach, and G. P. Russ, “Rare earths elements as indicators of different marine depositional environments in chert and shale,” Geol 18, 268–272 (1990).

  30. W. B. Nance and S. R. Taylor, “Rare earth element patterns and crustal evolutions. I. Australian post-archean sedimentary rocks,” Geochim. Cosmochim. Acta 40, 1539–1551 (1976).

  31. H. W. Nesbitt and G. M. Young, “Early Proterozoic climates and plate motions inferred from major element chemistry of lutites,” Nature 299, 715–717 (1982).

  32. B. P. Roser and R. J. Korsch, “Provenance signatures of sandstone mudstone suites determined using discriminant function analysis of major element data,” Chem. Geol. 67, 119–139 (1988).

  33. J. A. Winchester and P. A. Floyd, “Geochemical discrimination of different magma series and their differentiation products using immobile elements,” Chem. Geol. 20, 325–343 (1977).

Download references

ACKNOWLEDGMENTS

We are grateful to the reviewers A.I. Malinovsky and R.Kh. Sungatullin for comments and advice that significantly improved the manuscript.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-05-00604) and was made in the framework of the government-financed task of the Shilo North-East Interdisciplinary Scientific Research Institute, Far Eastern Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Brynko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Recommended for publishing by A.A. Sorokin

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brynko, I.V., Mikhalitsyna, T.I., Biakov, A.S. et al. Permian Terrigenous Deposits of the Omolon Massif: Formation Settings and Source Area (According to Geochemical Data). Russ. J. of Pac. Geol. 17, 182–195 (2023). https://doi.org/10.1134/S1819714023020021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714023020021

Keywords:

Navigation