Skip to main content
Log in

On the Nature of Caspian Clouds

  • Original Paper
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Caspian clouds (CCs) are formed between the southern coast of the Caspian Sea and the Alborz Mountains. The purpose of this study is to identify characteristics of CCs using aerosol, cloud, and meteorological data from Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2), Moderate Resolution Imaging Spectroradiometer (MODIS), and ECMWF Reanalysis version 5 (ERA5) during 2000–2020. During this period, we identified and investigated 636 days with CCs. The results indicated that the frequency (%) of these clouds was higher in the summer than in other seasons because synoptic system activity varies between hot and cold periods. The hot season with the beginning of high-pressure subtropical Azores activity and the formation of a stable atmosphere in northern Iran leads to more frequent occurrence of CCs. These clouds are mainly the low- and middle-level clouds in the region, e.g., stratus and altocumulus. CCs resulted in 13.9% of annual rainfall, and 55.9% and 18.7% of the summer and autumn rainfall, respectively, relative to total rainfall from all cloud types in the study region. In the multivariate regression analysis, CC precipitation exhibited a strong positive relationship with the cloud water path (CWP), cloud optical thickness (COT), and cloud effective radius (CER). A comparison of the mean and standard deviation of aerosol optical thickness (AOT) and aerosol index (AI) for CC and non-CC days did not show a significant difference. Examination of the synoptic patterns showed that the main factors in the formation of CCs are the specific environmental conditions of the region and the orographic lift of stable air masses. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model indicated that the source of moisture for the formation of CCs was largely the Caspian Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Alijani, B., 2008: Climate of Iran. 8th Ed., Payame Noor University publishers, Tehran, 230 pp.

    Google Scholar 

  • Andreae, M. O., and D. Rosenfeld, 2008: Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Errth-Sci. Rev., 89, 13–41, doi: https://doi.org/10.1016/j.earscirev.2008.03.001.

    Article  Google Scholar 

  • Ashraf, A., N. Aziz, and S. S. Ahmed, 2013: Spatio temporal behavior of AOD over Pakistan using MODIS data. Proceedings of the 2013 International Conference on Aerospace Science & Engineering (ICASE), IEEE, Islamabad, Pakistan, 1–6, doi: https://doi.org/10.1109/ICASE.2013.6785568.

    Google Scholar 

  • Christensen, M. W., A. Gettelman, J. Cermak, et al., 2022: Opportunistic experiments to constrain aerosol effective radiative forcing. Atmos. Chem. Phys., 22, 641–674, doi: https://doi.org/10.5194/acp-22-641-2022.

    Article  Google Scholar 

  • Collins, W., W. Conant, and V. Ramanathan, 1994: Earth Radiation Budget, Clouds, and Climate Sensitivity. Chem. Atmosphere Its Impact Glob. J. G. Calvert, Ed., Blackwell Scientific Publishers, Oxford, UK, 207–215.

    Google Scholar 

  • Draxler, R. R., and G. D. Rolph, 2015: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model Access via NOAA ARL READY Website. Available at http://www.arl.noaa.gov/. Accessed on 22 February 2023.

  • Fan, J. W., L. R. Leung, D. Rosenfeld, et al., 2013: Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. Proc. Natl. Acad. Sci. USA, 110, 4581–4590, doi: https://doi.org/10.1073/pnas.1316830110.

    Article  Google Scholar 

  • Fan, J. W., Y. Wang, D. Rosenfeld, et al., 2016: Review of aerosol-cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci., 73, 4221–4252, doi: https://doi.org/10.1175/JAS-D-16-0037.1.

    Article  Google Scholar 

  • Gelaro, R., W. McCarty, M. J. Suárez, et al., 2017: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Climate, 30, 5419–5454, doi: https://doi.org/10.1175/JCLI-D-16-0758.1.

    Article  Google Scholar 

  • Ghasemi, A. R., 2012: Modeling of Spatial and Temporal Variations of Cloud Cover with Emphasis on Precipitation in Iran. Ph.D. thesis, Tabriz University, Iran.

    Google Scholar 

  • Hersbach, H., B. Bell, P. Berrisford, et al., 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999–2049, doi: https://doi.org/10.1002/qj.3803.

    Article  Google Scholar 

  • IAPSAG, 2007: Aerosol Pollution Impact on Precipitation: A Scientific Review. WMO, Geneva, 482 pp.

    Google Scholar 

  • Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472, doi: https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Article  Google Scholar 

  • Kavyani, M. R., and B. Alijani, 2000: The Foundation of Meteorology. 7th Ed., Samt Publications, Tehran, 592 pp.

    Google Scholar 

  • Khoshhal, J. D., 1997: Synoptic Model of Climatology for Precipitation of More than One Hundred Millimeters on the Southern Shores of the Caspian Sea. Ph.D. thesis, Tarbiat Modares University, Iran, 300 pp. (in Persian)

    Google Scholar 

  • Kistler, R., E. Kalnay, W. Collins, et al., 2001: The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247–268, doi: https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    Article  Google Scholar 

  • Mahmoudvand, R., H. Hassani, and R. Wilson, 2007: Is the sample coefficient of variation a good estimator for the population coefficient of variation? World Appl. Sci. J., 2, 519–522.

    Google Scholar 

  • Marret, F., S. Leroy, F. Chalié, et al., 2004: New organic-walled dinoflagellate cysts from recent sediments of Central Asian seas. Rev. Palaeobot. Palynol., 129, 1–20, doi: https://doi.org/10.1016/j.revpalbo.2003.10.002.

    Article  Google Scholar 

  • Masoudian, A., 2009: Climate of Iran. Isfahan University, 277 pp.

  • McFiggans, G., P. Artaxo, U. Baltensperger, et al., 2006: The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmos. Chem. Phys., 6, 2593–2649, doi: https://doi.org/10.5194/acp-6-2593-2006.

    Article  Google Scholar 

  • Menzel, W. P., and K. Strabala, 1997: Cloud Top Properties and Cloud Phase: Algorithm Theoretical Basis Document (version 8). ATBD MOD-04, University of Wisconsin, Madison, 63 pp.

    Google Scholar 

  • Minnis, P., W. L. Jr. Smith, and D. F. Young, 2001: Cloud Macro- and Microphysical Properties Derived from GOES over the ARM SGP Domain. Presented at the 11th ARM Science Team Meeting Proceedings, Atlanta, Georgia, 19–23 March, 1–11.

  • Nazemolsadat, M. J., 2015: Fundamentals of Air and Climatology. 3rd Ed., University Publishing Center, 440 pp.

  • Platnick, S., M. D. King, S. A. Ackerman, et al., 2003: The MOD-IS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459–473, doi: https://doi.org/10.1109/TGRS.2002.808301.

    Article  Google Scholar 

  • Rolph, G., A. Stein, and B. Stunder, 2017: Real-time environmental applications and display system: READY. Environ. Model. Softw., 95, 210–228, doi: https://doi.org/10.1016/j.envsoft.2017.06.025.

    Article  Google Scholar 

  • Rosenfeld, D., 2006: Aerosol-cloud interactions control of earth radiation and latent heat release budgets. Solar Variability and Planetary Climates, Calisesi, Y., R. M. Bonnet, L. Gray, et al., Eds., Springer, New York, 149–157, doi: https://doi.org/10.1007/978-0-387-48341-2_12.

    Google Scholar 

  • Stein, A. F., R. R. Draxler, G. D. Rolph, et al., 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 2059–2077, doi: https://doi.org/10.1175/BAMS-D-14-00110.1.

    Article  Google Scholar 

  • Stephens, G. L., D. G. Vane, R. J. Boain, et al., 2002: The Cloud-Sat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 1771–1790, doi: https://doi.org/10.1175/BAMS-83112-1771.

    Article  Google Scholar 

  • Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607–613, doi: https://doi.org/10.1038/nature08281.

    Article  Google Scholar 

  • Stull, R., 2016: Practical Meteorology: An Algebra-Based Survey of Atmospheric Science. The University of British Columbia, Vancouver, 940 pp.

    Google Scholar 

  • Xia, X., 2012: Significant decreasing cloud cover during 1954–2005 due to more clear-sky days and less overcast days in China and its relation to aerosol. Ann. Geophys., 30, 573–582, doi: https://doi.org/10.5194/angeo-30-573-2012.

    Article  Google Scholar 

  • Zhao, B., B. Zhang, C. X. Shi, et al., 2019: Comparison of the global energy cycle between Chinese reanalysis interim and ECMWF reanalysis. J. Meteor. Res., 33, 563–575, doi: https://doi.org/10.1007/s13351-019-8129-7.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Atmospheric Data Center and the Goddard Center for providing the MODIS satellite data (https://modis.gsfc.nasa.gov/data/) and analysis infrastructure (“Giovanni”; https://giovanni.gsfc.nasa.gov/giovanni) as a part of NASA’s Goddard Earth Sciences (GES; http://ladsweb.nascom.nasa.gov/data) and NOAA for providing satellite and synoptic data (https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.surface.html). The authors gratefully acknowledge Iran Meteorological Organization (IMO) for providing the visibility data in this publication (http://www.irimo.ir/eng/wd/720-Products-Services.html). Also, the authors gratefully acknowledge the NOAA Air Resources Laboratory for the provision of the HYSPLIT transport and dispersion model and READY website (http://ready.arl.noaa.gov). This work was supported by the Department of Climatology at the University of Tabriz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashedi Shahnaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahnaz, R., Golamhasan, M., Saeed, J. et al. On the Nature of Caspian Clouds. J Meteorol Res 37, 262–272 (2023). https://doi.org/10.1007/s13351-023-2167-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-023-2167-x

Key words

Navigation