Skip to main content
Log in

Selected Problems of Classical and Modern Celestial Mechanics and Stellar Dynamics: II–Modern Studies

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

A review is given, in the modern context of applications, of the major important scientific results obtained by the scientists and graduates of St. Petersburg State University in the field of celestial mechanics and stellar dynamics. The second part of the review covers the following topics: estimates and calculation of the MOID parameter, problems of asteroid–comet hazard, dust complexes in the Solar System, rotational dynamics of planetary satellites, circumbinary dynamics, and methods for the discovery and determination of orbits of exoplanets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Notes

  1. See also the section on the Kholshevnikov metrics in the first part of this review.

  2. The most up-to-date version can be obtained from http://sourceforge.net/projects/distlink.

  3. The algorithm implemented in (Baluev and Mikryukov, 2019) uses the Ruffini–Horner scheme to find the roots of a sixteenth-degree algebraic polynomial.

  4. It is easy to show (Mikryukov and Baluev, 2019) that σ is an optimal (attainable) estimate for the distance ρ. For example, at e1 = e2 = 0 we have ρ = σ. The question of the optimality of the estimate τ remains open. It is most likely (Mikryukov and Baluev, 2019) that τ is not an optimal estimate, i.e., at ρ > 0 we always have ρ > τ.

  5. To conduct their experiments, Mikryukov and Baluev used the MPCORB catalog published by the Minor Planet Center.

  6. See the NASA JPL website, http://ssd.jpl.nasa.gov/.

REFERENCES

  1. Aleksandrova, A.G., Galushina, T.Yu., Prishchepenko, A.B., Kholshevnikov, K.V., and Chechetkin, V.M., The preventive destruction of a hazardous asteroid, Astron. Rep., 2016, vol. 60, pp. 611–619.

    Article  ADS  Google Scholar 

  2. Baluev, R.V., Resonances of low orders in the planetary system of HD37124, Celestial Mech. Dyn. Astron., 2008, vol. 102, pp. 297–325.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Baluev, R.V., Orbital structure of the GJ876 planetary system, based on the latest Keck and HARPS radial velocity data, Celestial Mech. Dyn. Astron., 2011, vol. 111, pp. 235–266.

    Article  ADS  MATH  Google Scholar 

  4. Baluev, R.V., PlanetPack: A radial-velocity time-series analysis tool facilitating exoplanets detection, characterization, and dynamical simulations, Astron. Comput., 2013a, vol. 2, pp. 18–26.

    Article  ADS  Google Scholar 

  5. Baluev, R.V., The impact of red noise in radial velocity planet searches: only three planets orbiting GJ581?, Mon. Not. R. Astron. Soc., 2013b, vol. 429, pp. 2052–2068.

    Article  ADS  Google Scholar 

  6. Baluev, R.V., PlanetPack3: A radial-velocity and transit analysis tool for exoplanets, Astron. Comput., 2018a, vol. 25, pp. 221–229.

    Article  ADS  Google Scholar 

  7. Baluev, R.V., Statistical detection of patterns in unidimensional distributions by continuous wavelet transforms, Astron. Comput., 2018b, vol. 23, pp. 151–165.

    Article  ADS  Google Scholar 

  8. Baluev, R.V., Fast error-safe MOID computation involving hyperbolic orbits, Astron. Comput., 2021, vol. 34, p. 100440.

    Article  ADS  Google Scholar 

  9. Baluev, R.V. and Beaugé, C., Possible solution to the riddle of HD 82943 multi-planet system: The three-planet resonance 1 : 2 : 5?, Mon. Not. R. Astron. Soc., 2014, vol. 439, pp. 673–689.

    Article  ADS  Google Scholar 

  10. Baluev, R.V. and Mikryukov, D.V., Fast error-controlling MOID computation for confocal elliptic orbits, Astron. Comput., 2019, vol. 27, pp. 11–22.

    Article  ADS  Google Scholar 

  11. Baluev, R.V. and Shaidulin, V.S., Fine-resolution wavelet analysis of exoplanetary distributions: Hints of an overshooting iceline accumulation, Space Sci., 2018, vol. 363, p. 192.

    Article  ADS  Google Scholar 

  12. Baluyev, R.V. and Kholshevnikov, K.V., Distance between two arbitrary unperturbed orbits, Celestial Mech. Dyn. Astron., 2005, vol. 91, nos. 3–4, pp. 287–300.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Balyaev, I.A., Acceleration of numerical integration of the equations of motion of asteroids, Sol. Syst. Res., 2020, vol. 54, no. 6, pp. 557–566. https://doi.org/10.1134/S0038094620330011

    Article  ADS  Google Scholar 

  14. Banaszkiewicz, M. and Krivov, A.V., Hyperion as a dust source in the Saturnian system, in Dynamics and Astrometry of Natural and Artificial Celestial Bodies, Wytrzyszczak, I., Lieske, J.H., and Feldman, R.A, Eds., Dordrecht: Kluwer, 1997a, pp. 171–176.

    Google Scholar 

  15. Banaszkiewicz, M. and Krivov, A.V., Hyperion as a dust source in the Saturnian system, Icarus, 1997b, vol. 129, pp. 289–303.

    Article  ADS  Google Scholar 

  16. Batmunkh, N., Os’kina, K.I., Sannikova, T.N., Titov, V.B., and Kholshevnikov, K.V., Diversion of an asteroid using a transversal thruster, Astron. Rep., 2019, vol. 63, pp. 954–962.

    Article  ADS  Google Scholar 

  17. Chesley, S.R., Potential impact detection for near-Earth asteroids: The case of 99942 Apophis (2004 MN4), in Asteroids, Comets, Meteors. Proc. IAU Symp. No. 229, 2005, Cambridge: Univ. Press, 2006, pp. 215–228.

  18. Chesley, S.R., Asteroid impact hazard assessment over long time intervals, American Astronomical Society, AAS Meeting No. 219, 2011, p. 122.02.

  19. Demidova, T.V. and Shevchenko, I.I., Spiral patterns in planetesimal circumbinary disks, Astrophys. J., 2015, vol. 805, p. 38.

    Article  ADS  Google Scholar 

  20. Demidova, T.V. and Shevchenko, I.I., Three-lane and multi-lane signatures of planets in planetesimal disks, Mon. Not. R. Astron. Soc., 2016, vol. 463, pp. L22–L26.

    Article  ADS  Google Scholar 

  21. Demidova, T.V. and Shevchenko, I.I., Simulations of the dynamics of the debris disks in the systems Kepler-16, Kepler-34, and Kepler-35, Astron. Lett., 2018, vol. 44, no. 2, pp. 119–125.

    Article  ADS  Google Scholar 

  22. Demidova, T.V. and Shevchenko, I.I., Long-term dynamics of planetesimals in planetary chaotic zone, Astron. Lett., 2020, vol. 46, no. 11, pp. 774–782.

    Article  ADS  Google Scholar 

  23. Denk, T. and Mottola, S., Studies of irregular satellites: I. Lightcurves and rotation periods of 25 Saturnian moons from Cassini observations, Icarus, 2019, vol. 322, pp. 80–102.

    Article  ADS  Google Scholar 

  24. Devyatkin, A.V., Gorshanov, D.L., Gritsuk, A.N., Melnikov, A.V., Sidorov, M.Yu., and Shevchenko, I.I., Observations and theoretical analysis of lightcurves of natural satellites of planets, Sol. Syst. Res., 2002, vol. 36, no. 3, pp. 248–259.

    Article  ADS  Google Scholar 

  25. Dikarev, V.V., Dynamics of particles in Saturn’s E ring: Effects of charge variations and the plasma drag force, Astron. Astrophys., 1999, vol. 346, pp. 1011–1019.

    ADS  Google Scholar 

  26. Dikarev, V.V. and Krivov, A.V., Dynamics and spatial distribution of Saturn’s E ring particles, Sol. Syst. Res., 1998, vol. 32, no 2, pp. 128–143.

    ADS  Google Scholar 

  27. Dikarev, V.V., Krivov, A.V., and Grün, E., Two stages of dust delivery from satellites to planetary rings, Planet. Space Sci., 2006, vol. 54, pp. 1014–1023.

    Article  ADS  Google Scholar 

  28. El’kin, A.V. and Sokolov, L.L., On successive passages of NEAs in the vicinity of the Earth, Tez. dokl. Vseross. konf. s mezhdunarodnym uchastiem “Asteroidnaya opasnost’ 95” (Proc. Conf. with International Participation “Asteroid Hazard 95”), May 23–25, 1995, St. Petersburg: ITA RAN, MIPAO, 1995, vol. 2, p. 41.

  29. Hamilton, D.P. and Krivov, A.V., Circumplanetary dust dynamics: Effects of solar gravity, radiation pressure, planetary oblateness, and electromagnetism, Icarus, 1996, vol. 123, pp. 503–523.

    Article  ADS  Google Scholar 

  30. Hamilton, D.P. and Krivov, A.V., Dynamics of distant moons of asteroids, Icarus, 1997, vol. 128, pp. 241–249.

    Article  ADS  Google Scholar 

  31. Israelian, G., Santos, N.C., Mayor, M., and Rebolo, R., Evidence for planet engulfment by the star HD 82943, Nature, 2001, vol. 411, pp. 163–166.

    Article  ADS  Google Scholar 

  32. Ivashkin, V.V. and Stikhno, K.A., On the use of the gravitational effect for orbit correction of the asteroid Apophis, Dokl. Phys., 2009, vol. 54, pp. 101–105.

    Article  ADS  Google Scholar 

  33. Kholshevnikov, K.S., Balyaev, I.A., Sokolov, L.L., and Eskin, B.B., Retrospective analysis of the orbits of Earth-colliding asteroids, Vestn. S.-Peterb. Gos. Univ. Ser. 1. Astron., 2021, vol. 8 (66), no. 3, pp. 523–532.

  34. Kholshevnikov, K.V., Probability of collision with an object moving in an Earth impact orbit, Tr. Vsesoyuznogo soveshchaniya “Asteroidnaya opasnost’” 10–11 oktyabrya 1991 g., Sankt-Peterburg (Proc. All-Union Conference “Asteroid Hazard” October 10–11, 1991, St. Petersburg) Sokol’skii, A.G., Ed., St. Petersburg: Inst. Teor. Astron. Ross. Akad. Nauk, 1992, p. 95.

  35. Kholshevnikov, K.V. and Orlov, S.A., Dust torus I. Equations of the envelope surface of a family of trajectories of isotropically ejected particles, Vestn. S.-Peterb. Gos. Univ. Ser. 1, 2000, no. 3, pp. 118–123.

  36. Kholshevnikov, K.V. and Titov, V.B., Zadacha dvukh tel: Uchebnoe posobie (Two Body Problem: Handbook), St. Petersburg: Izd. S.-Peterb. Gos. Univ, 2007.

  37. Kholshevnikov, K.V. and Vassiliev, N.N., On linking coefficient of two Keplerian orbits, Celestial Mech. Dyn. Astron., 1999a, vol. 75, no. 1, pp. 67–74.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Kholshevnikov, K.V. and Vassiliev, N.N., On the distance function between two Keplerian elliptic orbits, Celestial Mech. Dyn. Astron., 1999b, vol. 75, no. 2, pp. 75–83.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Kholshevnikov, K.V., Krivov, A.V., Sokolov, L.L., and Titov, V.B., The dust torus around Phobos orbit, Icarus, 1993, vol. 105, pp. 351–362.

    Article  ADS  Google Scholar 

  40. Kholshevnikov, K.V., Orlov, S.A., and Dzhazmati, M.S., Dust torus III. Investigation of the envelope surface of a family of trajectories of isotropically ejected particles, Vestn. S.-Peterb. Gos. Univ. Ser. 1, 2003, no. 4, pp. 119–130.

  41. Koblik, V.V. and Kholshevnikov, K.V., Envelope of orbits of isotropically ejected particles, Vestn. S.-Peterb. Gos. Univ. Ser. 1, 199, no. 1, pp. 98–102.

  42. Kouprianov, V.V. and Shevchenko, I.I., Rotational dynamics of planetary satellites: A survey of regular and chaotic behavior, Icarus, 2005, vol. 176, pp. 224–234.

    Article  ADS  Google Scholar 

  43. Kouprianov, V.V. and Shevchenko, I.I., The shapes and rotational dynamics of minor planetary satellites, Sol. Syst. Res., 2006, vol. 40, no. 5, pp. 393–399. https://doi.org/10.1134/S0038094606050042

    Article  ADS  Google Scholar 

  44. Krivov, A.V., On the dust belts of Mars, Astron. Astrophys., 1994, vol. 291, pp. 657–663.

    ADS  Google Scholar 

  45. Krivov, A.V. and Banaszkiewicz, M., Unusual origin, evolution and fate of icy ejecta from Hyperion, Planet. Space Sci., 2001a, vol. 49, pp. 1265–1279.

    Article  ADS  Google Scholar 

  46. Krivov, A.V. and Banaszkiewicz, M., Dust influx to Titan from Hyperion, in Collisional Processes in the Solar System, Marov, M.Ya. and Rickman, H., Eds., Astrophysics and Space Science Library, Dordrecht: Kluwer, 2001b, vol. 261, pp. 265–276.

  47. Krivov, A.V. and Getino, J., Orbital evolution of high-altitude balloon satellites, Astron. Astrophys., 1997, vol. 318, pp. 308–314.

    ADS  Google Scholar 

  48. Krivov, A.V. and Hamilton, D.P., Martian dust belts: waiting for discovery, Icarus, 1997, vol. 128, pp. 335–353.

    Article  ADS  Google Scholar 

  49. Krivov, A.V. and Jurewicz, A., The ethereal dust envelopes of the Martian moons, Planet. Space Sci., 1998, vol. 47, pp. 45–56.

    Article  ADS  Google Scholar 

  50. Krivov, A.V., Sokolov, L.L., Kholshevnikov, K.V., and Shor, V.A., On the existence of the swarm of particles around the Phobos orbit, Sol. Syst. Res., 1991, vol. 25, no. 3, pp. 233–242.

    ADS  Google Scholar 

  51. Krivov, A.V., Sokolov, L.L., and Dikarev, V.V., Dynamics of Mars-orbiting dust: Effects of light pressure and planetary oblateness, Celestial Mech. Dyn. Astron., 1996, vol. 63, nos. 3–4, pp. 313–339.

    Article  ADS  MATH  Google Scholar 

  52. Krivov, A.V., Sokolov, L.L., and Getino, J., Orbital instability zones of balloon satellites, in Dynamics and Astrometry of Natural and Artificial Celestial Bodies, Wytrzyszczak, I., Lieske, J.H., and Feldman, R.A, Eds., Dordrecht: Kluwer, 1997, pp. 361–366.

    Google Scholar 

  53. Krivov, A.V., Kruger, H., Grün, E., Thiessenhusen, K.-U., and Hamilton, D.P., A tenuous dust ring of Jupiter formed by escaping ejecta from the Galilean satellites, J. Geophys. Res., 2002a, vol. 107, no. E1. https://doi.org/10.1029/2000JE001434

  54. Krivov, A.V., Wardinski, I., Spahn, F., Kruger, H., and Grün, E., Dust on the outskirts of the Jovian system, Icarus, 2002b, vol. 157, pp. 436–455.

    Article  ADS  Google Scholar 

  55. Krivov, A.V., Sremčević, M., Spahn, F., Dikarev, V.V., and Kholshevnikov, K.V., Impact-generated dust clouds around planetary satellites: spherically symmetric case, Planet. Space Sci., 2003, vol. 51, no. 3, pp. 251–269.

    Article  ADS  Google Scholar 

  56. Krivov, A.V., Feofilov, A.G., and Dikarev, V.V., Search for the putative dust belts of Mars: The late 2007 opportunity, Planet. Space Sci., 2006, vol. 54, nos. 9–10, pp. 871–878.

    Article  ADS  Google Scholar 

  57. Krüger, H., Krivov, A.V., Hamilton, D.P., and Grün, E., Detection of an impact-generated dust cloud around Ganymede, Nature, 1999, vol. 399, pp. 558–560.

    Article  ADS  Google Scholar 

  58. Krüger, H., Krivov, A.V., and Grün, E., A dust cloud around ganymede maintained by hypervelocity impacts of interplanetary micrometeoroids, Planet. Space Sci., 2000, vol. 48, pp. 1457–1471.

    Article  ADS  Google Scholar 

  59. Krüger, H., Krivov, A.V., Sremčević, M., and Grün, E., Impact-generated dust clouds surrounding the Galilean moons, Icarus, 2003, vol. 164, pp. 170–187.

    Article  ADS  Google Scholar 

  60. MacDonald, G.J.F., Tidal friction, Rev. Geophys. Space Phys., 1964, vol. 2, pp. 467–541.

    Article  ADS  Google Scholar 

  61. Makuch, M., Krivov, A.V., and Spahn, F., Long-term dynamical evolution of dusty ejecta from Deimos, Planet. Space Sci., 2005, vol. 53, pp. 357–369.

    Article  ADS  Google Scholar 

  62. Makuch, M., Brilliantov, N.V., Sremčević, M., Spahn, F., and Krivov, A.V., Stochastic circumplanetary dynamics of rotating non-spherical dust particles, Planet. Space Sci., 2006, vol. 54, pp. 855–870.

    Article  ADS  Google Scholar 

  63. Mardling, R., Resonance, chaos and stability: The three-body problem in astrophysics, Lect. Notes Phys., 2008, vol. 760, pp. 59–96.

  64. Melnikov, A.V., Bifurcation regime of a synchronous resonance in the translational-rotational motion of nonspherical natural satellites of planets, Cosmic Res., 2001, vol. 39, no. 1, pp. 68–77.

    Article  ADS  Google Scholar 

  65. Melnikov, A.V., Modelling of lightcurves of minor planetary satellites, Tr. IPA RAN, 2002, no. 8, pp. 131–132.

  66. Melnikov, A.V., Conditions for appearance of strange attractors in rotational dynamics of small planetary satellites, Cosmic Res., 2014, vol. 52, no. 6, pp. 461–471.

    Article  ADS  Google Scholar 

  67. Mel’nikov, A.V., Orientation of figures of small planetary satellites during chaotic rotation, Sol. Syst. Res., 2020, vol. 54, no. 5, pp. 432–441. https://doi.org/10.31857/S0320930X20050060

    Article  ADS  Google Scholar 

  68. Mel’nikov, A.V. and Shevchenko, I.I., The stability of the rotational motion of nonspherical natural satellites with respect to tilting the axis of rotation, Sol. Syst. Res., 1998, vol. 32, no. 6, pp. 480–490.

    ADS  Google Scholar 

  69. Mel’nikov, A.V. and Shevchenko, I.I., On the stability of the rotational motion of nonspherical natural satellites in a synchronous resonance, Sol. Syst. Res., 2000, vol. 34, no. 5, pp. 434–442.

    ADS  Google Scholar 

  70. Mel’nikov, A.V. and Shevchenko, I.I., Unusual rotation modes of minor planetary satellites, Sol. Syst. Res., 2007, vol. 41, no. 6, pp. 483–491. https://doi.org/10.1134/S0038094607060032

    Article  ADS  Google Scholar 

  71. Melnikov, A.V. and Shevchenko, I.I., On the rotational dynamics of Prometheus and Pandora, Celestial Mech. Dyn. Astron., 2008, vol. 101, nos. 1–2, pp. 31–47.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Melnikov, A.V. and Shevchenko, I.I., The rotation states predominant among the planetary satellites, Icarus, 2010, vol. 209, pp. 786–794.

    Article  ADS  Google Scholar 

  73. Melnikov, A.V. and Shevchenko, I.I., Rotational dynamics and evolution of planetary satellites in the solar and exoplanetary systems, Sol. Syst. Res., 2022, vol. 56, no. 1, pp. 1–22. https://doi.org/10.1134/S003809462201004X

    Article  ADS  Google Scholar 

  74. Mikryukov, D.V. and Baluev, R.V., A lower bound of the distance between two elliptic orbits, Celestial Mech. Dyn. Astron., 2019, vol. 131, no. 6, p. 28.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Orlov, S.A. and Kholshevnikov, K.V., Dust torus III? Envelope surface equations for a family of trajectories of isotropically ejected particles, taking into account the motion of nodes and pericenters, Vestn. S.-Peterb. Gos. Univ. Ser. 1., 2004, no. 1, pp. 112–119.

  76. Orlov, S.A. and Kholshevnikov, K.V., The orbital dust torus as an enveloping surface of a family of trajectories of isotropically ejected particles, Sol. Syst. Res., 2008, vol. 42, no. 2, pp. 91–110. https://doi.org/10.1007/s11208-008-2001-0

    Article  ADS  Google Scholar 

  77. Orlov, S.A. and Kholshevnikov, K.V., Dust torus produced by articles ejected in the apsidal points, Sol. Syst. Res., 2012, vol. 46, no. 3, pp. 208–219. https://doi.org/10.1134/S0038094612020098

    Article  ADS  Google Scholar 

  78. Orlov, S.A. and Kholshevnikov, K.V., Dust torus formed by particles ejected from a celestial body at an arbitrary point of its elliptic orbit, Celestial Mech. Dyn. Astron., 2013, vol. 116, pp. 35–52.

    Article  ADS  MathSciNet  Google Scholar 

  79. Petrov, N., Sokolov, L., Polyakhova, E., and Oskina, K., Predictions of asteroid hazard to the Earth for the 21st century, AIP Conf. Proc., 2018, vol. 1959, p. 040012.

    Article  Google Scholar 

  80. Popova, E.A. and Shevchenko, I.I., Planetary dynamics in the system α Centauri: The stability diagrams, Astron. Lett., 2012, vol. 38, no. 9, pp. 581–588.

    Article  ADS  Google Scholar 

  81. Popova, E.A. and Shevchenko, I.I., Kepler-16b: Safe in a resonance cell, Astrophys. J., 2013, vol. 769, pp. 152–158.

    Article  ADS  Google Scholar 

  82. Popova, E.A. and Shevchenko, I.I., On the stability of circumbinary planetary systems, Astron. Lett., 2016, vol. 42, no. 6, pp. 474–481.

    Article  ADS  Google Scholar 

  83. Shevchenko, I.I., The separatrix algorithmic map: Application to the spin-orbit motion, Celestial Mech. Dyn. Astron., 1999, vol. 73, pp. 259–268.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Shevchenko, I.I., Maximum Lyapunov exponents for chaotic rotation of natural planetary satellites, Cosmic Res., 2002, vol. 40, no. 3, pp. 296–304.

    Article  ADS  Google Scholar 

  85. Shevchenko, I.I., Adiabatic chaos in the Prometheus–Pandora system, Mon. Not. R. Astron. Soc., 2008, vol. 384, no. 3, pp. 1211–1220.

    Article  ADS  Google Scholar 

  86. Shevchenko, I.I., Chaotic zones around gravitating binaries, Astrophys. J., 2015, vol. 799, p. 8.

    Article  ADS  Google Scholar 

  87. Shevchenko, I.I., Lyapunov and clearing timescales in planetary chaotic zones, Astron. J., 2020a, vol. 160, p. 212.

    Article  ADS  Google Scholar 

  88. Shevchenko, I.I., Dynamical Chaos in Planetary Systems, Cham: Springer Nature, 2020b.

    Book  MATH  Google Scholar 

  89. Sokolov, L.L., Bashakov, A.A., and Pitjev, N.P., Peculiarities of the motion of asteroid 99942 Apophis, Sol. Syst. Res., 2008, vol. 42, no. 1, pp. 18–27. https://doi.org/10.1007/s11208-008-1003-2

    Article  ADS  Google Scholar 

  90. Sokolov, L.L., Bashakov, A.A., Borisova, T.P., Petrov, N.A., Pitjev, N.P., and Shaidulin, V.S., Impact trajectories of the asteroid Apophis in the 21st century, Sol. Syst. Res., 2012, vol. 46, no. 4, pp. 291–300. https://doi.org/10.1134/S0038094612040077

    Article  ADS  Google Scholar 

  91. Sokolov, L.L., Borisova, T.P., Vasil’ev, A.A., and Petrov, N.A., Properties of collision trajectories of asteroids with the Earth, Sol. Syst. Res., 2013, vol. 47, no. 5, pp. 408–413. https://doi.org/10.1134/S0038094613040072

    Article  ADS  Google Scholar 

  92. Sokolov, L.L., Petrov, N.A., Vasil’ev, A.A., Kuteeva, G.A., Shmyrov, A.S., and Eskin, B.B., On the possibility of deflecting an asteroid from collision with the Earth using the kinetic method, Sol. Syst. Res., 2018, vol. 52, no. 4, pp. 338–346. https://doi.org/10.1134/S0038094618040068

    Article  ADS  Google Scholar 

  93. Sokolov, L.L., Balyaev, I.A., Kuteeva, G.A., Petrov, N.A., and Eskin, B.B., Possible collisions and approaches of some dangerous asteroids with the Earth, Sol. Syst. Res., 2020, vol. 54, pp. 541–549. https://doi.org/10.1134/S0038094621010081

    Article  ADS  Google Scholar 

  94. Soter, S., Report of Center for Radiophysics and Space Research No. 462, Ithaca, NY: Cornell Univ., 1971.

    Google Scholar 

  95. Spahn, F., Krivov, A.V., Sremčević, M., Schwarz, U., and Kurths, J., Stochastic forces in circumplanetary dust dynamics, J. Geophys. Res., 2003, vol. 108, no. E4. https://doi.org/10.1029/2002JE001925

  96. Spahn, F., Albers, N., Hörning, M., Kempf, S., Krivov, A.V., Makuch, M., Schmidt, J., Seiŝ, M., and Sremčević, M., E ring dust sources: Implications from Cassini’s dust measurements, Planet. Space Sci., 2006a, vol. 54, nos. 9–10, pp. 1024–1032.

    Article  ADS  Google Scholar 

  97. Spahn, F., Schmidt, J., Albers, N., Horning, M., Makuch, M., Seiŝ, M., Kempf, S., Srama, R., Dikarev, V., Helfert, S., Moragas-Klostermeyer, G., Krivov, A.V., Sremčević, M., Tuzzolino, A.J., Economou, Th., and Grün, E., Cassini dust measurements at Enceladus and implications for the origin of the E ring, Science, 2006b, vol. 311, pp. 1416–1418.

    Article  ADS  Google Scholar 

  98. Srama, R., Ahrens, T.J., Altobelli, N., Auer, S., Bradley, J.G., Burton, M., Dikarev, V.V., Economou, T., Fechtig, H., Gőrlich, M., et al., The Cassini cosmic dust analyzer, Space Sci. Rev., 2004, vol. 114, nos. 1–4, pp. 465–518.

    Article  ADS  Google Scholar 

  99. Sremčević, M., Krivov, A.V., and Spahn, F., Impact-generated dust clouds around planetary satellites: asymmetry effects, Planet. Space Sci., 2003, vol. 51, pp. 455–471.

    Article  ADS  Google Scholar 

  100. Sremčević, M., Krivov, A.V., and Spahn, F., Impact-generated dust clouds around planetary satellites: Model versus Galileo data, Planet. Space Sci., 2005, vol. 53, pp. 625–641.

    Article  ADS  Google Scholar 

  101. Thiessenhusen, K.-U., Krivov, A.V., Krüger, H., and Grün, E., A dust cloud around Pluto and Charon, Planet. Space Sci., 2002, vol. 50, pp. 79–87.

    Article  ADS  Google Scholar 

  102. Wright, J.T., Veras, D., Ford, E.B., Johnson, J.A., Marcy, G.W., Howard, A.W., Isaacson, H., Fischer, D.A., Spronck, J., Anderson, J., and Valenti, J., The California planet survey. III. A possible 2 : 1 resonance in the exoplanetary triple system HD 37124, Astrophys. J., 2011, vol. 730, p. 93.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the reviewer for helpful remarks.

Funding

The work by D.V. Mikryukov and I.I. Shevchenko was supported by the Russian Science Foundation, project no. 22-22-00046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Shevchenko.

Additional information

Translated by A. Kobkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, I.I., Mel’nikov, A.V., Titov, V.B. et al. Selected Problems of Classical and Modern Celestial Mechanics and Stellar Dynamics: II–Modern Studies. Sol Syst Res 57, 175–189 (2023). https://doi.org/10.1134/S0038094623020077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094623020077

Keywords:

Navigation